<< Chapter < Page Chapter >> Page >

Then A = 10.3 size 12{A} {} blocks and θ = 29.1º size 12{"29.1º"} , so that

A x = A cos θ = ( 10.3 blocks ) ( cos 29.1º ) = 9.0 blocks size 12{}
A y = A sin θ = ( 10.3 blocks ) ( sin 29.1º ) = 5.0 blocks . size 12{""}

Calculating a resultant vector

If the perpendicular components A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} of a vector A size 12{A} {} are known, then A size 12{A} {} can also be found analytically. To find the magnitude A size 12{A} {} and direction θ size 12{θ} {} of a vector from its perpendicular components A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} , we use the following relationships:

A = A x 2 + A y 2 size 12{A= sqrt {A rSub { size 8{x} rSup { size 8{2} } } +A rSub { size 8{y} rSup { size 8{2} } } } } {}
θ = tan 1 ( A y / A x ) . size 12{θ="tan" rSup { size 8{ - 1} } \( A rSub { size 8{y} } /A rSub { size 8{x} } \) } {}
Vector A is shown with its horizontal and vertical components A sub x and A sub y respectively. The magnitude of vector A is equal to the square root of A sub x squared plus A sub y squared. The angle theta of the vector A with the x axis is equal to inverse tangent of A sub y over A sub x
The magnitude and direction of the resultant vector can be determined once the horizontal and vertical components A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} have been determined.

Note that the equation A = A x 2 + A y 2 size 12{A= sqrt {A rSub { size 8{x} rSup { size 8{2} } } +A rSub { size 8{y} rSup { size 8{2} } } } } {} is just the Pythagorean theorem relating the legs of a right triangle to the length of the hypotenuse. For example, if A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} are 9 and 5 blocks, respectively, then A = 9 2 +5 2 =10 . 3 size 12{A= sqrt {9 rSup { size 8{2} } "+5" rSup { size 8{2} } } "=10" "." 3} {} blocks, again consistent with the example of the person walking in a city. Finally, the direction is θ = tan –1 ( 5/9 ) =29.1º size 12{θ="tan" rSup { size 8{–1} } \( "5/9" \) "=29" "." 1 rSup { size 8{o} } } {} , as before.

Determining vectors and vector components with analytical methods

Equations A x = A cos θ size 12{A rSub { size 8{x} } =A"cos"θ} {} and A y = A sin θ size 12{A rSub { size 8{y} } =A"sin"θ} {} are used to find the perpendicular components of a vector—that is, to go from A size 12{A} {} and θ size 12{θ} {} to A x size 12{A rSub { size 8{x} } } {} and A y size 12{A rSub { size 8{y} } } {} . Equations A = A x 2 + A y 2 size 12{A= sqrt {A rSub { size 8{x} rSup { size 8{2} } } +A rSub { size 8{y} rSup { size 8{2} } } } } {} and θ = tan –1 ( A y / A x ) are used to find a vector from its perpendicular components—that is, to go from A x and A y to A and θ . Both processes are crucial to analytical methods of vector addition and subtraction.

Adding vectors using analytical methods

To see how to add vectors using perpendicular components, consider [link] , in which the vectors A size 12{A} {} and B size 12{B} {} are added to produce the resultant R size 12{R} {} .

Two vectors A and B are shown. The tail of vector B is at the head of vector A and the tail of the vector A is at origin. Both the vectors are in the first quadrant. The resultant R of these two vectors extending from the tail of vector A to the head of vector B is also shown.
Vectors A size 12{A} {} and B size 12{B} {} are two legs of a walk, and R size 12{R} {} is the resultant or total displacement. You can use analytical methods to determine the magnitude and direction of R size 12{R} {} .

If A and B represent two legs of a walk (two displacements), then R is the total displacement. The person taking the walk ends up at the tip of R . There are many ways to arrive at the same point. In particular, the person could have walked first in the x -direction and then in the y -direction. Those paths are the x - and y -components of the resultant, R x and R y size 12{R rSub { size 8{y} } } {} . If we know R x and R y size 12{R rSub { size 8{y} } } {} , we can find R and θ using the equations A = A x 2 + A y 2 and θ = tan –1 ( A y / A x ) size 12{θ="tan" rSup { size 8{–1} } \( A rSub { size 8{y} } /A rSub { size 8{x} } \) } {} . When you use the analytical method of vector addition, you can determine the components or the magnitude and direction of a vector.

Step 1. Identify the x- and y-axes that will be used in the problem. Then, find the components of each vector to be added along the chosen perpendicular axes . Use the equations A x = A cos θ size 12{A rSub { size 8{x} } =A"cos"θ} {} and A y = A sin θ size 12{A rSub { size 8{y} } =A"sin"θ} {} to find the components. In [link] , these components are A x size 12{A rSub { size 8{x} } } {} , A y size 12{A rSub { size 8{y} } } {} , B x size 12{B rSub { size 8{x} } } {} , and B y size 12{B rSub { size 8{y} } } {} . The angles that vectors A size 12{A} {} and B size 12{B} {} make with the x -axis are θ A size 12{θ rSub { size 8{A} } } {} and θ B size 12{θ rSub { size 8{B} } } {} , respectively.

Two vectors A and B are shown. The tail of the vector B is at the head of vector A and the tail of the vector A is at origin. Both the vectors are in the first quadrant. The resultant R of these two vectors extending from the tail of vector A to the head of vector B is also shown. The horizontal and vertical components of the vectors A and B are shown with the help of dotted lines. The vectors labeled as A sub x and A sub y are the components of vector A, and B sub x and B sub y as the components of vector B..
To add vectors A size 12{A} {} and B size 12{B} {} , first determine the horizontal and vertical components of each vector. These are the dotted vectors A x size 12{A rSub { size 8{x} } } {} , A y size 12{A rSub { size 8{y} } } {} , B x size 12{B rSub { size 8{x} } } {} and B y size 12{B rSub { size 8{y} } } {} shown in the image.

Step 2. Find the components of the resultant along each axis by adding the components of the individual vectors along that axis . That is, as shown in [link] ,

R x = A x + B x size 12{R rSub { size 8{x} } =A rSub { size 8{x} } +B rSub { size 8{x} } } {}

and

R y = A y + B y . size 12{R rSub { size 8{y} } =A rSub { size 8{y} } +B rSub { size 8{y} } } {}
Two vectors A and B are shown. The tail of vector B is at the head of vector A and the tail of the vector A is at origin. Both the vectors are in the first quadrant. The resultant R of these two vectors extending from the tail of vector A to the head of vector B is also shown. The vectors A and B are resolved into the horizontal and vertical components shown as dotted lines parallel to x axis and y axis respectively. The horizontal components of vector A and vector B are labeled as A sub x and B sub x and the horizontal component of the resultant R is labeled at R sub x and is equal to A sub x plus B sub x. The vertical components of vector A and vector B are labeled as A sub y and B sub y and the vertical components of the resultant R is labeled as R sub y is equal to A sub y plus B sub y.
The magnitude of the vectors A x size 12{A rSub { size 8{x} } } {} and B x size 12{B rSub { size 8{x} } } {} add to give the magnitude R x size 12{R rSub { size 8{x} } } {} of the resultant vector in the horizontal direction. Similarly, the magnitudes of the vectors A y size 12{A rSub { size 8{y} } } {} and B y size 12{B rSub { size 8{y} } } {} add to give the magnitude R y size 12{R rSub { size 8{y} } } {} of the resultant vector in the vertical direction.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask