# 21.3 Substructure of the nucleus

 Page 1 / 16
• Define and discuss the nucleus in an atom.
• Define atomic number.
• Define and discuss isotopes.
• Calculate the density of the nucleus.
• Explain nuclear force.

What is inside the nucleus? Why are some nuclei stable while others decay? (See [link] .) Why are there different types of decay ( $\alpha$ , $\beta$ and $\gamma$ )? Why are nuclear decay energies so large? Pursuing natural questions like these has led to far more fundamental discoveries than you might imagine.

We have already identified protons    as the particles that carry positive charge in the nuclei. However, there are actually two types of particles in the nuclei—the proton and the neutron , referred to collectively as nucleons    , the constituents of nuclei. As its name implies, the neutron    is a neutral particle ( $q=0$ ) that has nearly the same mass and intrinsic spin as the proton. [link] compares the masses of protons, neutrons, and electrons. Note how close the proton and neutron masses are, but the neutron is slightly more massive once you look past the third digit. Both nucleons are much more massive than an electron. In fact, ${m}_{p}=\text{1836}{m}_{e}$ (as noted in Medical Applications of Nuclear Physics and ${m}_{n}=\text{1839}{m}_{e}$ .

[link] also gives masses in terms of mass units that are more convenient than kilograms on the atomic and nuclear scale. The first of these is the unified atomic mass    unit (u), defined as

$\text{1 u}=1\text{.}\text{6605}×{\text{10}}^{-\text{27}}\phantom{\rule{0.25em}{0ex}}\text{kg.}$

This unit is defined so that a neutral carbon ${}^{\text{12}}\text{C}$ atom has a mass of exactly 12 u. Masses are also expressed in units of $\text{MeV/}{c}^{2}$ . These units are very convenient when considering the conversion of mass into energy (and vice versa), as is so prominent in nuclear processes. Using $E={\text{mc}}^{2}$ and units of $m$ in $\text{MeV/}{c}^{2}$ , we find that ${c}^{2}$ cancels and $E$ comes out conveniently in MeV. For example, if the rest mass of a proton is converted entirely into energy, then

$E={\text{mc}}^{2}=\left(\text{938.27 MeV/}{c}^{2}\right){c}^{2}=\text{938.27 MeV.}$

It is useful to note that 1 u of mass converted to energy produces 931.5 MeV, or

$\text{1 u}=\text{931.5 MeV/}{c}^{2}.$

All properties of a nucleus are determined by the number of protons and neutrons it has. A specific combination of protons and neutrons is called a nuclide    and is a unique nucleus. The following notation is used to represent a particular nuclide:

${}_{Z}^{A}{\text{X}}_{N},$

where the symbols $A$ , $\text{X}$ , $Z$ , and $N$ are defined as follows: The number of protons in a nucleus is the atomic number     $Z$ , as defined in Medical Applications of Nuclear Physics . X is the symbol for the element , such as Ca for calcium. However, once $Z$ is known, the element is known; hence, $Z$ and $\text{X}$ are redundant. For example, $Z=\text{20}$ is always calcium, and calcium always has $Z=\text{20}$ . $N$ is the number of neutrons in a nucleus. In the notation for a nuclide, the subscript $N$ is usually omitted. The symbol $A$ is defined as the number of nucleons or the total number of protons and neutrons ,

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
4
Because I'm writing a report and I would like to be really precise for the references
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!