<< Chapter < Page Chapter >> Page >
exp ( ln x ) = x for x > 0 and ln ( exp x ) = x for all x .

The following figure shows the graphs of exp x and ln x .

This figure is a graph. It has three curves. The first curve is labeled exp x. It is an increasing curve with the x-axis as a horizontal asymptote. It intersects the y-axis at y=1. The second curve is a diagonal line through the origin. The third curve is labeled lnx. It is an increasing curve with the y-axis as an vertical axis. It intersects the x-axis at x=1.
The graphs of ln x and exp x .

We hypothesize that exp x = e x . For rational values of x , this is easy to show. If x is rational, then we have ln ( e x ) = x ln e = x . Thus, when x is rational, e x = exp x . For irrational values of x , we simply define e x as the inverse function of ln x .


For any real number x , define y = e x to be the number for which

ln y = ln ( e x ) = x .

Then we have e x = exp ( x ) for all x , and thus

e ln x = x for x > 0 and ln ( e x ) = x

for all x .

Properties of the exponential function

Since the exponential function was defined in terms of an inverse function, and not in terms of a power of e , we must verify that the usual laws of exponents hold for the function e x .

Properties of the exponential function

If p and q are any real numbers and r is a rational number, then

  1. e p e q = e p + q
  2. e p e q = e p q
  3. ( e p ) r = e p r


Note that if p and q are rational, the properties hold. However, if p or q are irrational, we must apply the inverse function definition of e x and verify the properties. Only the first property is verified here; the other two are left to you. We have

ln ( e p e q ) = ln ( e p ) + ln ( e q ) = p + q = ln ( e p + q ) .

Since ln x is one-to-one, then

e p e q = e p + q .

As with part iv. of the logarithm properties, we can extend property iii. to irrational values of r , and we do so by the end of the section.

We also want to verify the differentiation formula for the function y = e x . To do this, we need to use implicit differentiation. Let y = e x . Then

ln y = x d d x ln y = d d x x 1 y d y d x = 1 d y d x = y .

Thus, we see

d d x e x = e x

as desired, which leads immediately to the integration formula

e x d x = e x + C .

We apply these formulas in the following examples.

Using properties of exponential functions

Evaluate the following derivatives:

  1. d d t e 3 t e t 2
  2. d d x e 3 x 2

We apply the chain rule as necessary.

  1. d d t e 3 t e t 2 = d d t e 3 t + t 2 = e 3 t + t 2 ( 3 + 2 t )
  2. d d x e 3 x 2 = e 3 x 2 6 x
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate the following derivatives:

  1. d d x ( e x 2 e 5 x )
  2. d d t ( e 2 t ) 3
  1. d d x ( e x 2 e 5 x ) = e x 2 5 x ( 2 x 5 )
  2. d d t ( e 2 t ) 3 = 6 e 6 t
Got questions? Get instant answers now!

Using properties of exponential functions

Evaluate the following integral: 2 x e x 2 d x .

Using u -substitution, let u = x 2 . Then d u = −2 x d x , and we have

2 x e x 2 d x = e u d u = e u + C = e x 2 + C .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate the following integral: 4 e 3 x d x .

4 e 3 x d x = 4 3 e −3 x + C

Got questions? Get instant answers now!

General logarithmic and exponential functions

We close this section by looking at exponential functions and logarithms with bases other than e . Exponential functions are functions of the form f ( x ) = a x . Note that unless a = e , we still do not have a mathematically rigorous definition of these functions for irrational exponents. Let’s rectify that here by defining the function f ( x ) = a x in terms of the exponential function e x . We then examine logarithms with bases other than e as inverse functions of exponential functions.


For any a > 0 , and for any real number x , define y = a x as follows:

y = a x = e x ln a .

Now a x is defined rigorously for all values of x . This definition also allows us to generalize property iv. of logarithms and property iii. of exponential functions to apply to both rational and irrational values of r . It is straightforward to show that properties of exponents hold for general exponential functions defined in this way.

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Leaves accumulate on the forest floor at a rate of 2 g/cm2/yr and also decompose at a rate of 90% per year. Write a differential equation governing the number of grams of leaf litter per square centimeter of forest floor, assuming at time 0 there is no leaf litter on the ground. Does this amount approach a steady value? What is that value?
Abdul Reply
You have a cup of coffee at temperature 70°C, which you let cool 10 minutes before you pour in the same amount of milk at 1°C as in the preceding problem. How does the temperature compare to the previous cup after 10 minutes?

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?