<< Chapter < Page Chapter >> Page >
This module is adapted from the Connexions module entitled Basic MOS Structure by Bill Wilson.

[link] shows the basic steps necessary to make the MOS structure. It will help us in our understanding if we now rotateour picture so that it is pointing sideways in our next few drawings. [link] shows the rotated structure. Note that in the p-silicon we have positively chargedmobile holes, and negatively charged, fixed acceptors. Because we will need it later, we have also shown the band diagram forthe semiconductor below the sketch of the device. Note that since the substrate is p-type, the Fermi level is located downclose to the valance band.

Formation of the metal-oxide-semiconductor (MOS) structure.
Basic metal-oxide-semiconductor (MOS) structure.

Let us now place a potential between the gate and the silicon substrate. Suppose we make the gate negative with respect to thesubstrate. Since the substrate is p-type, it has a lot of mobile, positively charged holes in it. Some of them will beattracted to the negative charge on the gate, and move over to the surface of the substrate. This is also reflected in the banddiagram shown in [link] . Remember that the density of holes is exponentially proportional to how close the Fermi level is tothe valence band edge. We see that the band diagram has been bent up slightly near the surface to reflect the extra holeswhich have accumulated there.

Applying a negative gate voltage to a basic metal-oxide-semiconductor (MOS) structure.

An electric field will develop between the positive holes and the negative gate charge. Note that the gate and the substrateform a kind of parallel plate capacitor, with the oxide acting as the insulating layer in-between them. The oxide is quite thincompared to the area of the device, and so it is quite appropriate to assume that the electric field inside the oxideis a uniform one. (We will ignore fringing at the edges.) The integral of the electric field is just the applied gate voltage V g . If the oxide has a thickness x ox then since E ox is uniform, it is given by, [link] .

E ox V g x ox

If we focus in on a small part of the gate, we can make a little "pill" box which extends from somewhere in the oxide, across theoxide/gate interface and ends up inside the gate material someplace. The pill-box will have an area Δ s . Now we will invoke Gauss' law which we reviewed earlier. Gauss' law simply says that the surface integral over aclosed surface of the displacement vector D (which is, of course, ε x E ) is equal to the total charge enclosed by that surface. We will assume that there is a surfacecharge density -Q g Coulombs/cm 2 on the surface of the gate electrode ( [link] ). The integral form of Gauss' Law is just:

S ε ox E Q encl
Finding the surface charge density.

Note that we have used ε ox E in place of D . In this particular set-up the integral is easy to perform, since theelectric field is uniform, and only pointing in through one surface - it terminates on the negative surface charge insidethe pill-box. The charge enclosed in the pill box is just -( Qg Δ s ), and so we have (keeping in mind that the surface integral of a vectorpointing into the surface is negative), [link] , or [link] .

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask