<< Chapter < Page Chapter >> Page >

The subject matter of this module is linear SHM – harmonic motion along a straight line about the point of oscillation. There are various physical quantities associated with simple harmonic motion. Here, we intend to have a closer look at quantities associated with SHM like velocity, acceleration, work done, kinetic energy, potential energy and mechanical energy etc. For the sake of completeness, we shall also have a recap of concepts already discussed in earlier modules.

The SHM force relation “F = -kx” is a generic form of equation for linear SHM – not specific to block-spring system. In the case of block-spring system, “k” is the spring constant. This point is clarified to emphasize that relations that we shall be developing in this module applies to all linear SHM and not to a specific case.

Since displacement of SHM can be represented either in cosine or sine forms, depending where we start observing motion at t = 0. For someone, it is easier to visualize beginning of SHM, when particle is released from positive extreme. On the other hand, expression in sine form is convenient as particle is at the center of oscillation at t = 0. For this reason, some prefer sine representation.

The very fact that there are two ways to represent displacement may pose certain ambiguity or uncertainty in mind. We shall , therefore, strive to maintain complete independence of forms with the understanding that when it is cosine function, then starting reference is positive extreme and if it is sine function, then starting reference is center of oscillation. In order to illustrate flexibility, we shall be using “sine” expression of displacement in this module instead of cosine function, which has so far been used.

Displacement

The displacement of the particle is given by :

x = A sin ω t + φ

where “A” is the amplitude,"ω" is angular frequency, “φ” is the phase constant and “ωt + φ” is the phase. Clearly, displacement is periodic with respect to time as it is represented by bounded trigonometric function. The displacement “x” varies between “-A” and “A”.

Velocity

The velocity of the particle as obtained from the solution of SHM equation is given by :

v = ω A 2 x 2

This is the relation of velocity of the particle with respect to displacement along the path of oscillation, bounded between “-ωA” and “ωA”. We can obtain a relation of velocity with respect to time by substituting expression of displacement “x” in the above equation :

v = ω A 2 x 2 = ω { A 2 A 2 sin 2 ω t + φ } = ω A cos ω t + φ

We can ,alternatively, deduce this expression by differentiating displacement, “x”, with respect to time :

v = x t = t A sin ω t + φ = ω A cos ω t + φ

The variation of velocity with respect to time is sinusoidal and hence periodic. Here, we draw both displacement and velocity plots with respect to time in order to compare how velocity varies as particle is at different positions.

Velocity - time plot

The velocity is represented by cosine function.

The upper figure is displacement – time plot, whereas lower figure is velocity – time plot. We observe following important points about variation of velocity :

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Oscillation and wave motion. OpenStax CNX. Apr 19, 2008 Download for free at http://cnx.org/content/col10493/1.12
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Oscillation and wave motion' conversation and receive update notifications?

Ask