<< Chapter < Page Chapter >> Page >

Pseudocode

1 function Kruskal(G)

2 for each vertex v in G do

3 Define an elementary cluster C(v) ← {v}.

4 Initialize a priority queue Q to contain all edges in G, using the weights as keys.

5 Define a tree T ← Ø //T will ultimately contain the edges of the MST

6 // n is total number of vertices

7 while T has fewer than n-1 edges do

8 // edge u,v is the minimum weighted route from/to v

9 (u,v) ← Q.removeMin()

10 // prevent cycles in T. add u,v only if T does not already contain an edge consisting of u and v.

11 // Note that the cluster contains more than one vertex only if an edge containing a pair of

12 // the vertices has been added to the tree.

13 Let C(v) be the cluster containing v, and let C(u) be the cluster containing u.

14 if C(v) ≠ C(u) then

15 Add edge (v,u) to T.

16 Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u).

17 return tree T

7.2.3. jarnik-prim’s algorithms

(From Wikipedia, the free encyclopedia)

Prim's algorithm is an algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm was discovered in 1930 by mathematician Vojtěch Jarník and later independently by computer scientist Robert C. Prim in 1957 and rediscovered by Dijkstra in 1959. Therefore it is sometimes called the DJP algorithm or Jarnik algorithm.

Description

The algorithm continuously increases the size of a tree starting with a single vertex until it spans all the vertices.

  • Input: A connected weighted graph G(V,E)
  • Initialize: V' = {x}, where x is an arbitrary node from V, E'= {}
  • repeat until V'=V:
    • Choose edge (u,v) from E with minimal weight such that u is in V' and v is not in V' (if there are multiple edges with the same weight, choose arbitrarily)
    • Add v to V', add (u,v) to E'
  • Output: G(V',E') is the minimal spanning tree

Time complexity

Minimum edge weight data structure Time complexity (total)
adjacency matrix, searching V^2
binary heap (as in pseudocode below) and adjacency list O((V + E) log(V)) = E log(V)
Fibonacci heap and adjacency list E + V log(V)

A simple implementation using an adjacency matrix graph representation and searching an array of weights to find the minimum weight edge to add requires O(V^2) running time. Using a simple binary heap data structure and an adjacency list representation, Prim's algorithm can be shown to run in time which is O(Elog V) where E is the number of edges and V is the number of vertices. Using a more sophisticated Fibonacci heap, this can be brought down to O(E + Vlog V), which is significantly faster when the graph is dense enough that E is Ω(Vlog V).

Example

Image Description Not seen Fringe Solution set
This is our original weighted graph. This is not a tree because the definition of a tree requires that there are no circuits and this diagram contains circuits. A more correct name for this diagram would be a graph or a network. The numbers near the arcs indicate their weight. None of the arcs are highlighted, and vertex D has been arbitrarily chosen as a starting point. C, G A, B, E, F D
The second chosen vertex is the vertex nearest to D: A is 5 away, B is 9, E is 15, and F is 6. Of these, 5 is the smallest, so we highlight the vertex A and the arc DA. C, G B, E, F A, D
The next vertex chosen is the vertex nearest to either D or A. B is 9 away from D and 7 away from A, E is 15, and F is 6. 6 is the smallest, so we highlight the vertex F and the arc DF. C B, E, G A, D, F
The algorithm carries on as above. Vertex B, which is 7 away from A, is highlighted. Here, the arc DB is highlighted in red, because both vertex B and vertex D have been highlighted, so it cannot be used. null C, E, G A, D, F, B
In this case, we can choose between C, E, and G. C is 8 away from B, E is 7 away from B, and G is 11 away from F. E is nearest, so we highlight the vertex E and the arc EB. Two other arcs have been highlighted in red, as both their joining vertices have been used. null C, G A, D, F, B, E
Here, the only vertices available are C and G. C is 5 away from E, and G is 9 away from E. C is chosen, so it is highlighted along with the arc EC. The arc BC is also highlighted in red. null G A, D, F, B, E, C
Vertex G is the only remaining vertex. It is 11 away from F, and 9 away from E. E is nearer, so we highlight it and the arc EG. Now all the vertices have been highlighted, the minimum spanning tree is shown in green. In this case, it has weight 39. null null A, D, F, B, E, C, G

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Data structures and algorithms. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10765/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Data structures and algorithms' conversation and receive update notifications?

Ask