<< Chapter < Page Chapter >> Page >

Note that the chemical bond in Fig. 1b results from the electron’s position between the nuclei. On first thought, this appears to answer our question of what we mean by “sharing an electron pair” to form a chemical bond. An electron positioned between two nuclei is “shared” to the extent that its potential energy is lowered due to attraction to both nuclei simultaneously.

On second thought, though, this description must be inaccurate. We have learned our study of Energy Levels in Atoms that an electron must obey the uncertainty principle and that, as a consequence, the electron does not have a definite position, between the nuclei or otherwise. We can only hope to specify a probability for observing an electron in a particular location. This probability is, from quantum mechanics, provided by the wave function. What does this probability distribution look like for the H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} molecular ion?

To answer this question, we begin by experimenting with a distribution that we know: the 1s electron orbital in a hydrogen atom. This we recall has the symmetry of a sphere, with equal probability in all directions away from the nucleus. To create an H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} molecular ion from a hydrogen atom, we must add a bare second hydrogen nucleus (an H + size 12{H rSup { size 8{+{}} } } {} ion). Imagine bringing this nucleus closer to the hydrogen atom from a very great distance (see Fig. 2a). As the H + size 12{H rSup { size 8{+{}} } } {} ion approaches the neutral atom, both the hydrogen atom’s nucleus and electron respond to the electric potential generated by the positive charge. The electron is attracted and the hydrogen atom nucleus is repelled. As a result, the distribution of probability for the electron about the nucleus must become distorted, so that the electron has a greater probability of being near the H + size 12{H rSup { size 8{+{}} } } {} ion and the nucleus has a greater probability of being farther from the ion. This distortion, illustrated in Fig. 2b, is called “polarization”: the hydrogen atom has become like a “dipole”, with greater negative charge to one side and greater positive charge to the other.

This polarization must increase as the H + size 12{H rSup { size 8{+{}} } } {} ion approaches the hydrogen atom until, eventually, the electron orbital must be sufficiently distorted that there is equal probability for observing the electron in proximity to either hydrogen nucleus (see Fig. 2c). The electron probability distribution in Fig. 2c now describes the motion of the electron, not in a hydrogen atom, but in an H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} molecular ion. As such, we refer to this distribution as a “molecular orbital.”

We note that the molecular orbital in Fig. 2c is more delocalized than the atomic orbital in Fig. 2a, and this is also important in producing the chemical bond. We recall from the discussion of Atomic Energy Levels that the energy of an electron in an orbital is determined, in part, by the compactness of the orbital. The more the orbital confines the motion of the electron, the higher is the kinetic energy of the electron, an effect we referred to as the “confinement energy.” Applying this concept to the orbitals in Fig. 2, we can conclude that the confinement energy is lowered when the electron is delocalized over two nuclei in a molecular orbital. This effect contributes significantly to the lowering of the energy of an electron resulting from sharing by two nuclei.

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
I'm not good at math so would you help me
what is the problem that i will help you to self with?
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, General chemistry i. OpenStax CNX. Jul 18, 2007 Download for free at http://cnx.org/content/col10263/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General chemistry i' conversation and receive update notifications?