<< Chapter < Page Chapter >> Page >

Aliasing in the spatial frequency domain

Avoiding spatial aliasing

As we saw was the case in the time domain, a phenomenon known as aliasing can occur in the frequency domain if signals are not sampled at high enough rate. We have the same sort of considerations to take into account when we want to analyze the spectrum of the spatial frequency as well. As was discussed in the introduction , the Nyquest equivalent of the sampling rate is 1/2 of the minimum wavelength. This comes about from the relationship between speed, frequency and wavelength, which was discussed in the introduction as well. The figure below demonstrates the effects of aliasing in the spatial domain; it looks identical to filtering the time domain except that instead of the x-axis being related to pi/T it is now pi/d, where d is the distance between sensors. So, if we bandlimit our signal in temporal frequency, so that we can sample as two times the maximum temporal frequency, and if we design the sensors so that half of the minimum wavelength is greater than distance between sensors, we can avoid aliasing in both time and space!
Spatial Aliasing

Spatial frequency transform

Introduction to the spatial frequency transform

Analogous to the DFT , is the sampled and windowed spatial equivalent, which is what we used to be able to filter our signal in frequency. The reason we want the information in the spatial frequency or wavenumber domain is because it is directly correlated to the angle the signal is coming from relative to the ULA. The spatial DFT is computed as the FFT of the first FFT. The first FFT represents the time domain frequency response and the second FFT represents the wavenumber response. This seems strange this would work, but let's explore this a little more fully. Let's look at theoretical example.

Mentally visualizing the spatial frequency transform

The 2-d transform

Consider a box filled with numbers. The box is labeled on one edge time and on the other edge space. The first FFT we are taking is to obtain the temporal frequencies, so this would be like looking at a row along the box and taking the FFT of the numbers going across, while the spatial FFT would be calculated by looking at the numbers going down the columns. This is done repeatedly on each row and column, so the first FFT would go across each row, while the 2nd one would go down each column. This is easier to comprehend with a picture like the one below.
Visualization of mapping a signal into Spatial&Temporal Frequencies

Sft with sinusoids

Since we were interested in detecting sinusoids, it would be interesting to consider what this kind of "double" Fourier Transform would do to a sinusoid. From our list of Fourier Transforms we know that the FFT of a sinusoid will give us a delta function shifted by the frequency of the sinusoid. We then see that the FFT of a delta function is 1, which would mean that we get the equivalent of white noise in spatial frequency! Fortunately, this is not exactly how the spatial FFT works. We are basically taking the FFT across one set of vectors followed by the FFT down the columns of those vectors, we are NOT taking the FFT(FFT(f(x,t)). So, when we accomplish this sort of arrangement on our signal, f(x,t), we get:
Spatial FFT of a Sinusoid

A sinc function!

Spatial domain filtering

Just as we are able to filter signals in temporal frequency, we can filter signals in spatial frequency. In fact, the way we accomplished the direction detecting algorithm in labview used a graph very similiar as the one above and then looking for the largest magnitude part of the signal. Once, this value is known, quick computation can then find the angle that signal came from! Ta da! We're done! Well, sort of.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Array signal processing. OpenStax CNX. Jul 20, 2005 Download for free at http://cnx.org/content/col10255/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Array signal processing' conversation and receive update notifications?

Ask