<< Chapter < Page Chapter >> Page >
Derives basic properties of the Laplace transform.

Properties of the laplace transform

The properties associated with the Laplace transform are similar to those of the Fourier transform. First, let's set define some notation, we will use the notation L { } to denote the Laplace transform operation. Therefore we can write X ( s ) = L x ( t ) and x ( t ) = L - 1 X ( s ) for the forward and inverse Laplace transforms, respectively. We can also use the transform pair notation used earlier:

x ( t ) X ( s )

With this notation defined, lets now look at some properties.

Linearity

Given that x 1 ( t ) X 1 ( s ) and x 2 ( t ) X 2 ( s ) then for any constants α and β , we have

α x 1 ( t ) + β x 2 ( t ) α X 1 ( s ) + β X 2 ( s )

The linearity property follows easily using the definition of the Laplace transform.

Time delay

The reason we call this the time delay property rather than the time shift property is that the time shift must be positive, i.e. if τ > 0 , then x ( t - τ ) corresponds to a delay. If τ < 0 then we would not be able to use the single-sided Laplace transform because we would have a lower integration limit of τ , which is less than zero. To derive the property, lets evaluate the Laplace transform of the time-delayed signal

L x ( t - τ ) = 0 x ( t - τ ) e - s t d t

Letting γ = t - τ leads to t = γ + τ and d t = d γ . Substituting these quantities into [link] gives

L x ( t - τ ) = - τ x ( γ ) e - s ( γ + τ ) d γ = e - s τ - τ x ( γ ) e - s γ d γ = e - s τ - τ 0 x ( γ ) e - s γ d γ + e - s τ 0 x ( γ ) e - s γ d γ

where we note that the first integral in the last line is zero since x ( t ) = 0 , t < 0 . Therefore the time delay property is given by

L x ( t - τ ) = e - s τ X ( s )

S-shift

This property is the Laplace transform corresponds to the frequency shift property of the Fourier transform. In fact, the derivation of the s -shift property is virtually identical to that of the frequency shift property.

L e - a t x ( t ) = 0 e - a t x ( t ) e - s t d t = 0 x ( t ) e - ( a + s ) t d t = 0 x ( t ) e - ( a + σ + j Ω ) t d t = X ( s + a )

The s -shift property also alters the region of convergence of the Laplace transform. If the region of convergence for X ( s ) is σ > σ m i n , then the region of convergence for L e - a t x ( t ) is σ > σ m i n - Re ( a ) .

Multiplication by t

Let's begin by taking the derivative of the Laplace transform:

d X ( s ) d s = d d s 0 x ( t ) e - s t d t = 0 x ( t ) d d s e - s t d t = - 0 t x ( t ) e - s t d t

So we can write

L t x ( t ) = - d X ( s ) d s

This idea can be extended to multiplication by t n . Letting y ( t ) = t x ( t ) , if follows that

t y ( t ) - d Y ( s ) d s d 2 X ( s ) d s 2

Proceeding in this manner, we find that

t n x ( t ) ( - 1 ) n d n X ( s ) d s n

Time scaling

The time scaling property for the Laplace transform is similar to that of the Fourier transform:

L x ( α t ) = 0 x ( α t ) e - s t d t = 1 α 0 x ( γ ) e - s α γ d γ = 1 α X s α

where in the second equality, we made the substitution t = γ α and d t = d γ α .

Convolution

The derivation of the convolution property for the Laplace transform is virtually identical to that of the Fourier transform. We begin with

L - x ( τ ) h ( t - τ ) d τ = - x ( τ ) L h ( t - τ ) d τ

Applying the time-delay property of the Laplace transform gives

- x ( τ ) L h ( t - τ ) d τ = H ( s ) - x ( τ ) e - s τ d τ = H ( s ) X ( s )

If h ( t ) is the the impulse response of a linear time-invariant system, then we call H ( s ) the system function of the system. The frequency response results by setting s = j Ω in H ( s ) . The system function provides us with a very powerful means of determining the output of a linear time-invariant filter given the input signal. It will also enable us to determine a means of establishing the stability We will discuss stability shortly of a linear-time invariant filter, something which was not possible with the frequency response.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals, systems, and society. OpenStax CNX. Oct 07, 2012 Download for free at http://cnx.org/content/col10965/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals, systems, and society' conversation and receive update notifications?

Ask