<< Chapter < Page Chapter >> Page >
Given a set of structures of the same molecule, it is often necessary to decide which are more similar or less similar to each other. This module presents a few ways to approach that problem, including root mean squared distance (RMSD), least RMSD, and intramolecular distance measures.

    Topics in this module

  • Comparing Molecular Conformations
  • RMSD and lRMSD
  • Optimal Alignment for lRMSD Using Rotation Matrices
  • Optimal Alignment for lRMSD Using Quaternions
    • Introduction to Quaternions
    • Quaternions and Three-Dimensional Rotations
    • Optimal Alignment with Quaternions
  • Intramolecular Distance and Related Measures

Comparing molecular conformations

Molecules are not rigid. On the contrary, they are highly flexible objects, capable of changing shape dramatically through the rotation of dihedral angles. We need a measure to express how much a molecule changes going from one conformation to another, or alternatively, how different two conformations are from each other. Each distinct shape of a given molecule is called a conformation . Although one could conceivably compute the volume of the intersection of thealpha shapes for two conformations (see Molecular Shapes and Surfaces for an explanation of alpha shapes) to measure the shape change, this is prohibitively computationally expensive. Simpler measures of distance between conformations have been defined, based on variables such as the Cartesian coordinates for each atom, or the bond and torsion angles within the molecule. When working with Cartesian coordinates, one can represent a molecular conformation as a vector whose components are the Cartesian coordinates of the molecule's atoms. Therefore, a conformation for a molecule with N atoms can be represented as a 3N-dimensional vector of real numbers.

Rmsd and lrmsd

One of the most widely accepted difference measures for conformations of a molecule is least root mean square deviation (lRMSD) . To calculate the RMSD of a pair of structures (say x and y), each structure must be represented as a 3N-length (assuming N atoms) vector of coordinates. The RMSD is the square root of the average of the squared distances between corresponding atoms of x and y. It is a measure of the average atomic displacement between the two conformations:

However, when molecular conformations are sampled from molecular dynamics or other forms of sampling, it is often the case that the molecule drifts away from the origin and rotates in an arbitrary way. The lRMSD distance aims at compensating for these facts by representing the minimum RMSD over all possible relative positions and orientations of the two conformations under consideration. Calculating the lRMSD consists of first finding an optimal alignment of the two structures, and then calculating their RMSD. Note that aligning two conformations may require both a translation and rotation. In other words, before computing the RMSD distance, it is necessary to remove the translation of the centroid of both conformations and to perform an "optimal alignment" or "optimal rotation" of them, since these two factors artificially increase the RMSD distance between them.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Geometric methods in structural computational biology. OpenStax CNX. Jun 11, 2007 Download for free at http://cnx.org/content/col10344/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Geometric methods in structural computational biology' conversation and receive update notifications?

Ask