<< Chapter < Page Chapter >> Page >
Definir la convolución y obtener la Integral de Convolución.

Motivación

La convolución nos ayuda a determinar el efecto que tiene el sistema en la señal de entrada. Puede ser visto que el sistema lineal de tiempo invariante es completamente caracterizado por su respuesta al impulso. A primera vista, esto puede parecer de pequeño uso, ya que las funciones de impulso no están bien definidas en aplicaciones reales. Sin embargo la propiedad de desplazamiento del impulso nos dice que una señal puede ser descompuesta en una suma infinita (integral) de impulsos escalados y desplazados. Conociendo como un sistema afecta un impulso simple, y entendiendo la manera en que una señal es abarcada por impulsos escaldos y sumados, suena razonable que sea posible escalar y sumar la respuesta al impulso a un sistema en para poder determinar que señal de salida resultara de una entrada en particular. Esto es precisamente lo que la convolución hace - la convolución determina la salida del sistema por medio conocimiento de la entrada y la respuesta al impulso del sistema .

En el resto de este modulo, vamos a examinar exactamente como la convolución es definida a partir del razonamiento anterior. Esto resultara en la integral de convolución (véase la siguiente sección) y sus propiedades . Estos conceptos son muy importantes en la Ingeniería Eléctrica y harán la vida de los ingenieros mas sencilla si se invierte el tiempo en entender que es lo que esta pasando.

Para poder entender completamente la convolución, será de utilidad también ver la convolución de tiempo discreto ). También será de gran ayuda experimentar con los applets disponibles en internet. Este recurso nos ofrecerá una aproximación mas crucial del concepto.

Integral de convolución

Como mencionamos anteriormente, la integral de convolución nos da una manera matemática fácil de expresar la salida de un sistema LTI basado en una señal arbitraria, x t ,y la respuesta al impulso, h t . La integral de convolución es expresada como

y t τ x τ h t τ
La convolución es una herramienta muy importante que es representada por el símbolo , y puede ser escrita como
y t x t h t
Haciendo unos cambios simples en las variables de la integral de convolución, τ t τ , podemos ver que la convolución es conmutativa :
x t h t h t x t
Para más información de las características de la integral de convolución, léase sobre la Propiedades de la Convolución .

Ahora presentaremos dos aproximaciones distintas que se derivan de la integral de convolución. Estos procesos, junto con un ejemplo básico, nos ayudaran para construir una intuición sobre la convolución.

Proceso i: el método corto

Este proceso sigue de cerca el mencionado en la sección anterior en la Motivación . Para iniciar esto, es necesario establecer las asunciones que haremos. En este momento, la única obligada en nuestro sistema es que este sea lineal e invariante en el tiempo.

    Breve descripción de los pasos de este proceso:

  1. Un impulso de entrada, nos da como salida una respuesta al impulso.
  2. Un impulso desplazado nos da como salida una respuesta al impulso desplazada. Esto es debido a la invariante en el tiempo del sistema
  3. Podemos escalar el impulso de entrada para obtener como salida un impulso escaldo. Esto es usando la propiedad de linealidad de la multiplicación escalar.
  4. Podemos sumar un número infinito de estos impulsos escalados para obtener un número infinito de sumas de respuestas al impulso escaladas. Esto es usando la cualidad de la aditividad de linealidad.
  5. Ahora vemos que esta suma infinita no es mas que una integral, así que podemos convertir ambos lados en integrales.
  6. Reconociendo que la entrada es la función f t , también reconocemos que la salida es exactamente la integral de convolución .

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?

Ask