<< Chapter < Page Chapter >> Page >
Definir la convolución y obtener la Integral de Convolución.

Motivación

La convolución nos ayuda a determinar el efecto que tiene el sistema en la señal de entrada. Puede ser visto que el sistema lineal de tiempo invariante es completamente caracterizado por su respuesta al impulso. A primera vista, esto puede parecer de pequeño uso, ya que las funciones de impulso no están bien definidas en aplicaciones reales. Sin embargo la propiedad de desplazamiento del impulso nos dice que una señal puede ser descompuesta en una suma infinita (integral) de impulsos escalados y desplazados. Conociendo como un sistema afecta un impulso simple, y entendiendo la manera en que una señal es abarcada por impulsos escaldos y sumados, suena razonable que sea posible escalar y sumar la respuesta al impulso a un sistema en para poder determinar que señal de salida resultara de una entrada en particular. Esto es precisamente lo que la convolución hace - la convolución determina la salida del sistema por medio conocimiento de la entrada y la respuesta al impulso del sistema .

En el resto de este modulo, vamos a examinar exactamente como la convolución es definida a partir del razonamiento anterior. Esto resultara en la integral de convolución (véase la siguiente sección) y sus propiedades . Estos conceptos son muy importantes en la Ingeniería Eléctrica y harán la vida de los ingenieros mas sencilla si se invierte el tiempo en entender que es lo que esta pasando.

Para poder entender completamente la convolución, será de utilidad también ver la convolución de tiempo discreto ). También será de gran ayuda experimentar con los applets disponibles en internet. Este recurso nos ofrecerá una aproximación mas crucial del concepto.

Integral de convolución

Como mencionamos anteriormente, la integral de convolución nos da una manera matemática fácil de expresar la salida de un sistema LTI basado en una señal arbitraria, x t ,y la respuesta al impulso, h t . La integral de convolución es expresada como

y t τ x τ h t τ
La convolución es una herramienta muy importante que es representada por el símbolo , y puede ser escrita como
y t x t h t
Haciendo unos cambios simples en las variables de la integral de convolución, τ t τ , podemos ver que la convolución es conmutativa :
x t h t h t x t
Para más información de las características de la integral de convolución, léase sobre la Propiedades de la Convolución .

Ahora presentaremos dos aproximaciones distintas que se derivan de la integral de convolución. Estos procesos, junto con un ejemplo básico, nos ayudaran para construir una intuición sobre la convolución.

Proceso i: el método corto

Este proceso sigue de cerca el mencionado en la sección anterior en la Motivación . Para iniciar esto, es necesario establecer las asunciones que haremos. En este momento, la única obligada en nuestro sistema es que este sea lineal e invariante en el tiempo.

    Breve descripción de los pasos de este proceso:

  1. Un impulso de entrada, nos da como salida una respuesta al impulso.
  2. Un impulso desplazado nos da como salida una respuesta al impulso desplazada. Esto es debido a la invariante en el tiempo del sistema
  3. Podemos escalar el impulso de entrada para obtener como salida un impulso escaldo. Esto es usando la propiedad de linealidad de la multiplicación escalar.
  4. Podemos sumar un número infinito de estos impulsos escalados para obtener un número infinito de sumas de respuestas al impulso escaladas. Esto es usando la cualidad de la aditividad de linealidad.
  5. Ahora vemos que esta suma infinita no es mas que una integral, así que podemos convertir ambos lados en integrales.
  6. Reconociendo que la entrada es la función f t , también reconocemos que la salida es exactamente la integral de convolución .

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?

Ask