# 7.1 Equilibrium constants  (Page 4/14)

 Page 4 / 14

## Homogeneous equilibria

A homogeneous equilibrium is one in which all of the reactants and products are present in a single solution (by definition, a homogeneous mixture). In this chapter, we will concentrate on the two most common types of homogeneous equilibria: those occurring in liquid-phase solutions and those involving exclusively gaseous species. Reactions between solutes in liquid solutions belong to one type of homogeneous equilibria. The chemical species involved can be molecules, ions, or a mixture of both. Several examples are provided here.

${\text{C}}_{2}{\text{H}}_{2}\left(aq\right)+2{\text{Br}}_{2}\left(aq\right)⇌{\text{C}}_{2}{\text{H}}_{2}{\text{Br}}_{4}\left(aq\right)\phantom{\rule{5em}{0ex}}{K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{\left[{\text{C}}_{2}{\text{H}}_{2}{\text{Br}}_{4}\right]}{\left[{\text{C}}_{2}{\text{H}}_{2}\right]\phantom{\rule{0.2em}{0ex}}{\left[{\text{Br}}_{2}\right]}^{2}}$
${\text{I}}_{2}\left(aq\right)+{\text{I}}^{\text{−}}\left(aq\right)⇌{\text{I}}_{3}{}^{\text{−}}\left(aq\right)\phantom{\rule{5em}{0ex}}{K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{\left[{\text{I}}_{3}{}^{\text{−}}\right]}{\left[{\text{I}}_{2}\right]\left[{\text{I}}^{\text{−}}\right]}$
${\text{Hg}}_{2}{}^{2+}\left(aq\right)+{\text{NO}}_{3}{}^{\text{−}}\left(aq\right)+3{\text{H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)⇌2{\text{Hg}}^{2+}\left(aq\right)+{\text{HNO}}_{2}\left(aq\right)+4{\text{H}}_{2}\text{O}\left(l\right)$
${K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{{\left[{\text{Hg}}^{\text{2+}}\right]}^{2}\left[{\text{HNO}}_{2}\right]}{\left[{\text{Hg}}_{2}{}^{2+}\right]\left[{\text{NO}}_{3}{}^{\text{−}}\right]{\left[{\text{H}}_{3}{\text{O}}^{\text{+}}\right]}^{3}}$
$\text{HF}\left(aq\right)+{\text{H}}_{2}\text{O}\left(l\right)⇌{\text{H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{F}}^{\text{−}}\left(aq\right)\phantom{\rule{5em}{0ex}}{K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{\left[{\text{H}}_{3}{\text{O}}^{\text{+}}\right]\left[{\text{F}}^{\text{−}}\right]}{\left[\text{HF}\right]}$
${\text{NH}}_{3}\left(aq\right)+{\text{H}}_{2}\text{O}\left(l\right)⇌{\text{NH}}_{4}{}^{\text{+}}\left(aq\right)+{\text{OH}}^{\text{−}}\left(aq\right)\phantom{\rule{5em}{0ex}}{K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{\left[{\text{NH}}_{4}{}^{\text{+}}\right]\left[{\text{OH}}^{\text{−}}\right]}{\left[{\text{NH}}_{3}\right]}$

In each of these examples, the equilibrium system is an aqueous solution, as denoted by the aq annotations on the solute formulas. Since H 2 O( l ) is the solvent for these solutions, its concentration does not appear as a term in the K c expression, as discussed earlier, even though it may also appear as a reactant or product in the chemical equation.

Reactions in which all reactants and products are gases represent a second class of homogeneous equilibria. We use molar concentrations in the following examples, but we will see shortly that partial pressures of the gases may be used as well.

${\text{C}}_{2}{\text{H}}_{6}\left(g\right)⇌{\text{C}}_{2}{\text{H}}_{4}\left(g\right)+{\text{H}}_{2}\left(g\right)\phantom{\rule{5em}{0ex}}{K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{\left[{\text{C}}_{2}{\text{H}}_{4}\right]\phantom{\rule{0.2em}{0ex}}\left[{\text{H}}_{2}\right]}{\left[{\text{C}}_{2}{\text{H}}_{6}\right]}$
$3{\text{O}}_{2}\left(g\right)⇌2{\text{O}}_{3}\left(g\right)\phantom{\rule{5em}{0ex}}{K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{{\left[{\text{O}}_{3}\right]}^{2}}{{\left[{\text{O}}_{2}\right]}^{3}}$
${\text{N}}_{2}\left(g\right)+3{\text{H}}_{2}\left(g\right)⇌2{\text{NH}}_{3}\left(g\right)\phantom{\rule{5em}{0ex}}{K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{{\left[{\text{NH}}_{3}\right]}^{2}}{\left[{\text{N}}_{2}\right]{\phantom{\rule{0.2em}{0ex}}\left[{\text{H}}_{2}\right]}^{3}}$
${\text{C}}_{3}{\text{H}}_{8}\left(g\right)+5{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⇌3{\text{CO}}_{2}\left(g\right)+4{\text{H}}_{2}\text{O}\left(g\right)\phantom{\rule{5em}{0ex}}{K}_{c}=\phantom{\rule{0.2em}{0ex}}\frac{{\left[{\text{CO}}_{2}\right]}^{3}{\left[{\text{H}}_{2}\text{O}\right]}^{4}}{\left[{\text{C}}_{3}{\text{H}}_{8}\right]{\left[{\text{O}}_{2}\right]}^{5}}$

Note that the concentration of H 2 O( g ) has been included in the last example because water is not the solvent in this gas-phase reaction and its concentration (and activity) changes.

Whenever gases are involved in a reaction, the partial pressure of each gas can be used instead of its concentration in the equation for the reaction quotient because the partial pressure of a gas is directly proportional to its concentration at constant temperature. This relationship can be derived from the ideal gas equation, where M is the molar concentration of gas, $\frac{n}{V}.$

$PV=nRT$
$P=\left(\frac{n}{V}\right)RT$
$=MRT$

Thus, at constant temperature, the pressure of a gas is directly proportional to its concentration.

Using the partial pressures of the gases, we can write the reaction quotient for the system ${\text{C}}_{2}{\text{H}}_{6}\left(g\right)⇌{\text{C}}_{2}{\text{H}}_{4}\left(g\right)+{\text{H}}_{2}\left(g\right)$ by following the same guidelines for deriving concentration-based expressions:

${Q}_{P}=\phantom{\rule{0.2em}{0ex}}\frac{{P}_{{\text{C}}_{2}{\text{H}}_{4}}{P}_{{\text{H}}_{2}}}{{P}_{{\text{C}}_{2}{\text{H}}_{6}}}$

In this equation we use Q P to indicate a reaction quotient written with partial pressures: ${P}_{{\text{C}}_{2}{\text{H}}_{6}}$ is the partial pressure of C 2 H 6 ; ${P}_{{\text{H}}_{2}},$ the partial pressure of H 2 ; and ${P}_{{\text{C}}_{2}{\text{H}}_{6}},$ the partial pressure of C 2 H 4 . At equilibrium:

${K}_{P}={Q}_{P}=\phantom{\rule{0.2em}{0ex}}\frac{{P}_{{\text{C}}_{2}{\text{H}}_{4}}{P}_{{\text{H}}_{2}}}{{P}_{{\text{C}}_{2}{\text{H}}_{6}}}$

The subscript P in the symbol K P    designates an equilibrium constant derived using partial pressures instead of concentrations. The equilibrium constant, K P , is still a constant, but its numeric value may differ from the equilibrium constant found for the same reaction by using concentrations.

Conversion between a value for K c    , an equilibrium constant expressed in terms of concentrations, and a value for K P , an equilibrium constant expressed in terms of pressures, is straightforward (a K or Q without a subscript could be either concentration or pressure).

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
how do you find theWhat are the wavelengths and energies per photon of two lines
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF