<< Chapter < Page Chapter >> Page >


ʼn Vierkant is ʼn rombus met al vier sye ewe lank en al vier hoeke gelyk aan 90 .

ʼn Opsomming van die eienskappe van ʼn vierkant:

  • Beide pare teenoorstaande sye is parallel.
  • Al vier sye is ewe lank.
  • Al vier die hoeke is 90 .
  • Beide pare teenoorstaande hoeke is ewe groot.
  • Die hoeklyne halveer mekaar met hoeke van 90 .
  • Diagonale is ewe lank.
  • Diagonale halveer beide pare teenoorstaande hoeke (d.w.s. hulle is almal 45 ).
ʼn Voorbeeld van ʼn vierkant - ʼn rombus met al die hoeke gelyk aan 90


ʼn Vlieër is ʼn vierhoek met twee pare aangrensende sye ewe lank.

ʼn Oposmming van die eienskappe van ʼn vlieër is:

  • Twee pare aangrensende sye is ewe lank.
  • Een paar teenoorstaande hoeke (die hoeke tussen die ongelyke sye) is ewe groot.
  • Een diagonaal halveer die ander een en hierdie diagonaal halveer ook een paar teenoorstaande hoeke.
  • Diagonale sny mekaar reghoekig.
ʼn Voorbeeld van ʼn vlieër

Reghoeke is ʼn spesiale geval (ʼn deelversameling) van die parallelogramme. Reghoeke is parallelogramme met alle hoeke regte hoeke. Vierkante is ʼn spesiale geval (deelversameling) van die reghoeke. Vierkante is reghoeke met al vier sye ewe lank. So, alle vierkante is parallelogramme én reghoeke. As jy gevra word om te bewys dat ʼn vierhoek ʼn parallelogram is, is dit genoeg om aan te toon dat beide pare teenoorstaande sye parallel is. Maar, as jy gevra word om te bewys dat ʼn vierhoek ʼn vierkant is, dan moet jy ook wys dat al die hoeke regte hoeke is én dat al die sye ewe lank is.


Veelhoeke is oral rondom ons. ʼn Stopteken het die vorm van ʼn agthoek, m.a.w. ʼn agthoekige veelhoek. Die heuningkoek van ʼn bynes bestaan uit heksagonale selle. Die oppervlak van ʼn tafel is dikwels ʼn reghoek.

In hierdie afdeling sal jy leer van gelykvormige veelhoeke.

Gelykvormigheid tussen veelhoeke

Bespreking: gelykvormige driehoeke

Gebruik die diagram om die tabel in te vul en beantwoord die vrae wat daarop volg.

AB DE = . . . c m . . . c m = . . . A ^ =... D ^ ...
BC EF = . . . c m . . . c m = . . . B ^ =... E ^ =...
AC DF = . . . c m . . . c m = . . . C ^ ... F ^ =...

  1. Wat kan jy sê oor jou berekening van: AB DE , BC EF , AC DF ?
  2. Wat kan jy sê oor A ^ en D ^ ?
  3. Wat kan jy sê oor B ^ en E ^ ?
  4. Wat kan jy sê oor C ^ en F ^ ?

As twee veelhoeke gelykvormig is, is die een ʼn vergroting van die ander. Dit beteken dat die veelhoeke dieselfde grootte hoeke sal hê en dat hulle sye in verhouding tot mekaar sal wees.

Die simbool wat ons gebruik om gelykvormigheid aan te dui is ||| .

Gelykvormige Veelhoeke

Twee veelhoeke is gelykvormig as:

  1. hulle ooreenstemmende hoeke ewe groot is, én
  2. hulle ooreenstemmende sye eweredig is (die verhouding van die sylengtes gelyk is.)

Bewys dat die volgende twee veelhoeke gelykvormig is.

  1. Daar word gevra om te bewys dat ʼn paar veelhoeke gelykvormig is. Ons kan dit doen deur te bewys dat die verhouding van ooreenstemmende sye gelyk is en dat die ooreenstemmende hoeke ewe groot is.

  2. Die hoeke en hul groottes word gegee, so ons kan bewys dat hulle ewe groot is.

  3. Al die hoeke is 90 groot en

    A ^ = E ^ B ^ = F ^ C ^ = G ^ D ^ = H ^
  4. Eerstens moet ons kyk watter sye ooreenstem. Die reghoeke het twee lang sye wat gelyk is en twee kort sye wat gelyk is. Ons moet die verhoudings van die lang sye van die twee reghoeke vergelyk en ons moet die verhoudings van die kort sye vergelyk.

    Lang sye, groot reghoek se waardes op die klein reghoek se waardes:

    Verhouding = 2 L L = 2

    Kort sye, groot reghoek se waardes op die klein reghoek se waardes:

    Verhouding = L 1 2 L = 1 1 2 = 2

    Die verhouding van die ooreenstemmende sye is gelyk, twee in hierdie geval.

  5. Die ooreenstemmende hoeke is ewe groot en die verhoudings van die ooreenstemmende sye is gelyk, dus is dieveelhoeke ABCD en EFGH gelykvormig.

Alle vierkante is gelykvormig.

As twee vyfhoeke ABCDE en GHJKL gelykvormig is, bepaal die lengtes van die sye en die groottes van die hoeke wat met letters gemerk is:

  1. Daar word aan ons gegee dat ABCDE en GHJKL gelykvormig is. Dit beteken dat:

    AB GH = BC HJ = CD JK = DE KL = EA LG


    A ^ = G ^ B ^ = H ^ C ^ = J ^ D ^ = K ^ E ^ = L ^
  2. Daar word gevra om te bepaal

    1. a , b , c en d , en
    2. e , f and g .
  3. Die ooreenstemmende hoeke is ewe groot en daar is dus geen berekening nodig nie. Daar word aan ons ʼn paar sye D C en K J gegee wat ooreenstemmend is. D C K J = 4 , 5 3 = 1 , 5 so ons weet dat al die sye van K J H G L 1,5 keer kleiner is as die sylengtes van A B C D E .

  4. a 2 = 1 , 5 a = 2 × 1 , 5 = 3 b 1 , 5 = 1 , 5 b = 1 , 5 × 1 , 5 = 2 , 25 6 c = 1 , 5 c = 6 ÷ 1 , 5 = 4 d = 3 1 , 5 d = 2
  5. e = 92 ( ooreenstemmend tot H ) f = 120 ( ooreenstemmend tot D ) g = 40 ( ooreenstemmend tot E )
  6. a = 3 b = 2 , 25 c = 4 d = 2 e = 92 f = 120 g = 40

Gelykvormigheid van gelyksydige driehoeke

Werk in pare en toon dat alle gelyksydige driehoeke gelykvormig is.

Veelhoeke gemeng

  1. Vind die onbekende waardes in elke geval. Gee redes.
  2. Vind die hoeke en lengtes wat met letters gemerk is in die volgende figure:

Ondersoek: definieer poligone

Ondersoek verskillende maniere om poligone te definieer. Jy behoort spesiale aandag te gee aan die volgende poligone:

  • Gelykbenige driehoeke, gelyksydige driehoeke, reghoekige driehoeke
  • Vlieërs, parallelogramme, reghoeke, rombusse, vierkante, trapesiums

Neem in oorweging hoe die figure in hierdie boek gedefinieer is en watter alternatiewe definisies daar bestaan. Byvoorbeeld, ʼn driehoek is ʼn driesydige poligoon of ʼn driehoek is ʼn figuur met drie sye en drie hoeke. Driehoeke kan geklassifiseer word volgende hulle sye of volgens hulle hoeke. Kan mens ook vierhoeke op hierdie manier klassifiseer? Watter ander name is daar vir hierdie figure? Byvoorbeeld, vierhoeke kan ook genoem word tetragone.

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?