<< Chapter < Page Chapter >> Page >

Evaluating compositions of the form f ( f −1 ( y )) and f −1 ( f ( x ))

For any trigonometric function, f ( f 1 ( y ) ) = y for all y in the proper domain for the given function. This follows from the definition of the inverse and from the fact that the range of f was defined to be identical to the domain of f 1 . However, we have to be a little more careful with expressions of the form f 1 ( f ( x ) ) .

Compositions of a trigonometric function and its inverse

sin ( sin 1 x ) = x for 1 x 1 cos ( cos 1 x ) = x for 1 x 1 tan ( tan 1 x ) = x for < x <


sin 1 ( sin x ) = x only for  π 2 x π 2 cos 1 ( cos x ) = x only for  0 x π tan 1 ( tan x ) = x only for  π 2 < x < π 2

Is it correct that sin 1 ( sin x ) = x ?

No. This equation is correct if x belongs to the restricted domain [ π 2 , π 2 ] , but sine is defined for all real input values, and for x outside the restricted interval, the equation is not correct because its inverse always returns a value in [ π 2 , π 2 ] . The situation is similar for cosine and tangent and their inverses. For example, sin 1 ( sin ( 3 π 4 ) ) = π 4 .

Given an expression of the form f −1 (f(θ)) where f ( θ ) = sin θ ,   cos θ ,  or  tan θ , evaluate.

  1. If θ is in the restricted domain of f ,  then  f 1 ( f ( θ ) ) = θ .
  2. If not, then find an angle ϕ within the restricted domain of f such that f ( ϕ ) = f ( θ ) . Then f 1 ( f ( θ ) ) = ϕ .

Using inverse trigonometric functions

Evaluate the following:

  1. sin 1 ( sin ( π 3 ) )
  2. sin 1 ( sin ( 2 π 3 ) )
  3. cos 1 ( cos ( 2 π 3 ) )
  4. cos 1 ( cos ( π 3 ) )
  1. π 3  is in  [ π 2 , π 2 ] , so sin 1 ( sin ( π 3 ) ) = π 3 .
  2. 2 π 3  is not in  [ π 2 , π 2 ] , but sin ( 2 π 3 ) = sin ( π 3 ) , so sin 1 ( sin ( 2 π 3 ) ) = π 3 .
  3. 2 π 3  is in  [ 0 , π ] , so cos 1 ( cos ( 2 π 3 ) ) = 2 π 3 .
  4. π 3  is not in  [ 0 , π ] , but cos ( π 3 ) = cos ( π 3 ) because cosine is an even function.
  5. π 3  is in  [ 0 , π ] , so cos 1 ( cos ( π 3 ) ) = π 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate tan 1 ( tan ( π 8 ) ) and tan 1 ( tan ( 11 π 9 ) ) .

π 8 ; 2 π 9

Got questions? Get instant answers now!

Evaluating compositions of the form f −1 ( g ( x ))

Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form f 1 ( g ( x ) ) . For special values of x , we can exactly evaluate the inner function and then the outer, inverse function. However, we can find a more general approach by considering the relation between the two acute angles of a right triangle where one is θ , making the other π 2 θ . Consider the sine and cosine of each angle of the right triangle in [link] .

An illustration of a right triangle with angles theta and pi/2 - theta. Opposite the angle theta and adjacent the angle pi/2-theta is the side a. Adjacent the angle theta and opposite the angle pi/2 - theta is the side b. The hypoteneuse is labeled c.
Right triangle illustrating the cofunction relationships

Because cos θ = b c = sin ( π 2 θ ) , we have sin 1 ( cos θ ) = π 2 θ if 0 θ π . If θ is not in this domain, then we need to find another angle that has the same cosine as θ and does belong to the restricted domain; we then subtract this angle from π 2 . Similarly, sin θ = a c = cos ( π 2 θ ) , so cos 1 ( sin θ ) = π 2 θ if π 2 θ π 2 . These are just the function-cofunction relationships presented in another way.

Given functions of the form sin 1 ( cos x ) and cos 1 ( sin x ) , evaluate them.

  1. If x  is in  [ 0 , π ] , then sin 1 ( cos x ) = π 2 x .
  2. If x  is not in  [ 0 , π ] , then find another angle y  in  [ 0 , π ] such that cos y = cos x .
    sin 1 ( cos x ) = π 2 y
  3. If x  is in  [ π 2 , π 2 ] , then cos 1 ( sin x ) = π 2 x .
  4. If x  is not in [ π 2 , π 2 ] , then find another angle y  in  [ π 2 , π 2 ] such that sin y = sin x .
    cos 1 ( sin x ) = π 2 y

Questions & Answers

how can are find the domain and range of a relations
austin Reply
A cell phone company offers two plans for minutes. Plan A: $15 per month and $2 for every 300 texts. Plan B: $25 per month and $0.50 for every 100 texts. How many texts would you need to send per month for plan B to save you money?
Diddy Reply
6000
Robert
more than 6000
Robert
can I see the picture
Zairen Reply
How would you find if a radical function is one to one?
Peighton Reply
how to understand calculus?
Jenica Reply
with doing calculus
SLIMANE
Thanks po.
Jenica
Hey I am new to precalculus, and wanted clarification please on what sine is as I am floored by the terms in this app? I don't mean to sound stupid but I have only completed up to college algebra.
rachel Reply
I don't know if you are looking for a deeper answer or not, but the sine of an angle in a right triangle is the length of the opposite side to the angle in question divided by the length of the hypotenuse of said triangle.
Marco
can you give me sir tips to quickly understand precalculus. Im new too in that topic. Thanks
Jenica
if you remember sine, cosine, and tangent from geometry, all the relationships are the same but they use x y and r instead (x is adjacent, y is opposite, and r is hypotenuse).
Natalie
it is better to use unit circle than triangle .triangle is only used for acute angles but you can begin with. Download any application named"unit circle" you find in it all you need. unit circle is a circle centred at origine (0;0) with radius r= 1.
SLIMANE
What is domain
johnphilip
the standard equation of the ellipse that has vertices (0,-4)&(0,4) and foci (0, -15)&(0,15) it's standard equation is x^2 + y^2/16 =1 tell my why is it only x^2? why is there no a^2?
Reena Reply
what is foci?
Reena Reply
This term is plural for a focus, it is used for conic sections. For more detail or other math questions. I recommend researching on "Khan academy" or watching "The Organic Chemistry Tutor" YouTube channel.
Chris
how to determine the vertex,focus,directrix and axis of symmetry of the parabola by equations
Bryssen Reply
i want to sure my answer of the exercise
meena Reply
what is the diameter of(x-2)²+(y-3)²=25
Den Reply
how to solve the Identity ?
Barcenas Reply
what type of identity
Jeffrey
Confunction Identity
Barcenas
how to solve the sums
meena
hello guys
meena
For each year t, the population of a forest of trees is represented by the function A(t) = 117(1.029)t. In a neighboring forest, the population of the same type of tree is represented by the function B(t) = 86(1.025)t.
Shakeena Reply
by how many trees did forest "A" have a greater number?
Shakeena
32.243
Kenard
how solve standard form of polar
Rhudy Reply
what is a complex number used for?
Drew Reply
It's just like any other number. The important thing to know is that they exist and can be used in computations like any number.
Steve
I would like to add that they are used in AC signal analysis for one thing
Scott
Good call Scott. Also radar signals I believe.
Steve
They are used in any profession where the phase of a waveform has to be accounted for in the calculations. Imagine two electrical signals in a wire that are out of phase by 90°. At some times they will interfere constructively, others destructively. Complex numbers simplify those equations
Tim
Practice Key Terms 6

Get the best Precalculus course in your pocket!





Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask