# 8.3 Inverse trigonometric functions  (Page 7/15)

 Page 7 / 15

Discuss why this statement is incorrect: $\text{\hspace{0.17em}}\mathrm{arccos}\left(\mathrm{cos}\text{\hspace{0.17em}}x\right)=x\text{\hspace{0.17em}}$ for all $\text{\hspace{0.17em}}x.$

Determine whether the following statement is true or false and explain your answer: $\mathrm{arccos}\left(-x\right)=\pi -\mathrm{arccos}\text{\hspace{0.17em}}x.$

True . The angle, $\text{\hspace{0.17em}}{\theta }_{1}\text{\hspace{0.17em}}$ that equals $\text{\hspace{0.17em}}\mathrm{arccos}\left(-x\right)\text{\hspace{0.17em}}$ , $\text{\hspace{0.17em}}x>0\text{\hspace{0.17em}}$ , will be a second quadrant angle with reference angle, $\text{\hspace{0.17em}}{\theta }_{2}\text{\hspace{0.17em}}$ , where $\text{\hspace{0.17em}}{\theta }_{2}\text{\hspace{0.17em}}$ equals $\text{\hspace{0.17em}}\mathrm{arccos}x$ , $x>0\text{\hspace{0.17em}}$ . Since $\text{\hspace{0.17em}}{\theta }_{2}\text{\hspace{0.17em}}$ is the reference angle for $\text{\hspace{0.17em}}{\theta }_{1}$ , ${\theta }_{2}=\pi -{\theta }_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{arccos}\left(-x\right)\text{\hspace{0.17em}}$ = $\text{\hspace{0.17em}}\pi -\mathrm{arccos}x$ -

## Algebraic

For the following exercises, evaluate the expressions.

${\mathrm{sin}}^{-1}\left(\frac{\sqrt{2}}{2}\right)$

${\mathrm{sin}}^{-1}\left(-\frac{1}{2}\right)$

$-\frac{\pi }{6}$

${\mathrm{cos}}^{-1}\left(\frac{1}{2}\right)$

${\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)$

$\frac{3\pi }{4}$

${\mathrm{tan}}^{-1}\left(1\right)$

${\mathrm{tan}}^{-1}\left(-\sqrt{3}\right)$

$-\frac{\pi }{3}$

${\mathrm{tan}}^{-1}\left(-1\right)$

${\mathrm{tan}}^{-1}\left(\sqrt{3}\right)$

$\frac{\pi }{3}$

${\mathrm{tan}}^{-1}\left(\frac{-1}{\sqrt{3}}\right)$

For the following exercises, use a calculator to evaluate each expression. Express answers to the nearest hundredth.

${\mathrm{cos}}^{-1}\left(-0.4\right)$

1.98

$\mathrm{arcsin}\left(0.23\right)$

$\mathrm{arccos}\left(\frac{3}{5}\right)$

0.93

${\mathrm{cos}}^{-1}\left(0.8\right)$

${\mathrm{tan}}^{-1}\left(6\right)$

1.41

For the following exercises, find the angle $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ in the given right triangle. Round answers to the nearest hundredth.

For the following exercises, find the exact value, if possible, without a calculator. If it is not possible, explain why.

${\mathrm{sin}}^{-1}\left(\mathrm{cos}\left(\pi \right)\right)$

${\mathrm{tan}}^{-1}\left(\mathrm{sin}\left(\pi \right)\right)$

0

${\mathrm{cos}}^{-1}\left(\mathrm{sin}\left(\frac{\pi }{3}\right)\right)$

${\mathrm{tan}}^{-1}\left(\mathrm{sin}\left(\frac{\pi }{3}\right)\right)$

0.71

${\mathrm{sin}}^{-1}\left(\mathrm{cos}\left(\frac{-\pi }{2}\right)\right)$

${\mathrm{tan}}^{-1}\left(\mathrm{sin}\left(\frac{4\pi }{3}\right)\right)$

-0.71

${\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{5\pi }{6}\right)\right)$

${\mathrm{tan}}^{-1}\left(\mathrm{sin}\left(\frac{-5\pi }{2}\right)\right)$

$-\frac{\pi }{4}$

$\mathrm{cos}\left({\mathrm{sin}}^{-1}\left(\frac{4}{5}\right)\right)$

$\mathrm{sin}\left({\mathrm{cos}}^{-1}\left(\frac{3}{5}\right)\right)$

0.8

$\mathrm{sin}\left({\mathrm{tan}}^{-1}\left(\frac{4}{3}\right)\right)$

$\mathrm{cos}\left({\mathrm{tan}}^{-1}\left(\frac{12}{5}\right)\right)$

$\frac{5}{13}$

$\mathrm{cos}\left({\mathrm{sin}}^{-1}\left(\frac{1}{2}\right)\right)$

For the following exercises, find the exact value of the expression in terms of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ with the help of a reference triangle.

$\mathrm{tan}\left({\mathrm{sin}}^{-1}\left(x-1\right)\right)$

$\frac{x-1}{\sqrt{-{x}^{2}+2x}}$

$\mathrm{sin}\left({\mathrm{cos}}^{-1}\left(1-x\right)\right)$

$\mathrm{cos}\left({\mathrm{sin}}^{-1}\left(\frac{1}{x}\right)\right)$

$\frac{\sqrt{{x}^{2}-1}}{x}$

$\mathrm{cos}\left({\mathrm{tan}}^{-1}\left(3x-1\right)\right)$

$\mathrm{tan}\left({\mathrm{sin}}^{-1}\left(x+\frac{1}{2}\right)\right)$

$\frac{x+0.5}{\sqrt{-{x}^{2}-x+\frac{3}{4}}}$

## Extensions

For the following exercises, evaluate the expression without using a calculator. Give the exact value.

$\frac{{\mathrm{sin}}^{-1}\left(\frac{1}{2}\right)-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)+{\mathrm{sin}}^{-1}\left(\frac{\sqrt{3}}{2}\right)-{\mathrm{cos}}^{-1}\left(1\right)}{{\mathrm{cos}}^{-1}\left(\frac{\sqrt{3}}{2}\right)-{\mathrm{sin}}^{-1}\left(\frac{\sqrt{2}}{2}\right)+{\mathrm{cos}}^{-1}\left(\frac{1}{2}\right)-{\mathrm{sin}}^{-1}\left(0\right)}$

For the following exercises, find the function if $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}t=\frac{x}{x+1}.$

$\mathrm{cos}\text{\hspace{0.17em}}t$

$\frac{\sqrt{2x+1}}{x+1}$

$\mathrm{sec}\text{\hspace{0.17em}}t$

$\mathrm{cot}\text{\hspace{0.17em}}t$

$\frac{\sqrt{2x+1}}{x}$

$\mathrm{cos}\left({\mathrm{sin}}^{-1}\left(\frac{x}{x+1}\right)\right)$

${\mathrm{tan}}^{-1}\left(\frac{x}{\sqrt{2x+1}}\right)$

$t$

## Graphical

Graph $\text{\hspace{0.17em}}y={\mathrm{sin}}^{-1}x\text{\hspace{0.17em}}$ and state the domain and range of the function.

Graph $\text{\hspace{0.17em}}y=\mathrm{arccos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and state the domain and range of the function.

domain $\text{\hspace{0.17em}}\left[-1,1\right];\text{\hspace{0.17em}}$ range $\text{\hspace{0.17em}}\left[0,\pi \right]\text{\hspace{0.17em}}$

Graph one cycle of $\text{\hspace{0.17em}}y={\mathrm{tan}}^{-1}x\text{\hspace{0.17em}}$ and state the domain and range of the function.

For what value of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ does $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x={\mathrm{sin}}^{-1}x?\text{\hspace{0.17em}}$ Use a graphing calculator to approximate the answer.

approximately $\text{\hspace{0.17em}}x=0.00\text{\hspace{0.17em}}$

For what value of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ does $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x={\mathrm{cos}}^{-1}x?\text{\hspace{0.17em}}$ Use a graphing calculator to approximate the answer.

## Real-world applications

Suppose a 13-foot ladder is leaning against a building, reaching to the bottom of a second-ﬂoor window 12 feet above the ground. What angle, in radians, does the ladder make with the building?

Suppose you drive 0.6 miles on a road so that the vertical distance changes from 0 to 150 feet. What is the angle of elevation of the road?

An isosceles triangle has two congruent sides of length 9 inches. The remaining side has a length of 8 inches. Find the angle that a side of 9 inches makes with the 8-inch side.

Without using a calculator, approximate the value of $\text{\hspace{0.17em}}\mathrm{arctan}\left(10,000\right).\text{\hspace{0.17em}}$ Explain why your answer is reasonable.

A truss for the roof of a house is constructed from two identical right triangles. Each has a base of 12 feet and height of 4 feet. Find the measure of the acute angle adjacent to the 4-foot side.

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
e power cos hyperbolic (x+iy)
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
why {2kπ} union {kπ}={kπ}?
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
what is complex numbers
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Solve 2cos x + 3sin x = 0.5