<< Chapter < Page Chapter >> Page >

We will consider the case of single-phase flow with conservative body forces (e.g., gravitational) and density a single valued function of pressure. The pressure and potential from the body force can be combined into a single potential.

f - 1 ρ p = - Ω w h e r e Ω = p d p ρ - g z

If the change in density is small enough, the potential can be approximated by potential that has the units of pressure.

Ω P ρ , small change in density where P = p - ρ g z

Suppose that the flow is characterized by a certain linear dimension, L , a velocity U , and a density ρ . For example, if we consider the steady flow past an obstacle, L may be it's diameter and U and ρ the velocity and density far from the obstacle. We can make the variables dimensionless with the following

v * = v U , x * x L , t * = U L t , P * = P ρ U 2 * = L , * 2 = L 2 2

The conservative body force, Navier-Stokes equation is made dimensionless with these variables.

ρ D v D t = - P + ( λ + μ ) Θ + μ 2 v ρ U 2 L D v * D t * = - ρ U 2 L * P * + μ U L 2 ( λ / μ + 1 ) * Θ * + μ U L 2 * 2 v * ρ U L μ D v * D t * + * P * = ( λ / μ + 1 ) * Θ * + * 2 v * N R e D v * D t * + * P * = ( λ / μ + 1 ) * Θ * + * 2 v * where N R e = ρ U L μ = ρ U 2 μ U / L

The Reynolds number partitions the Navier -Stokes equation into two parts. The left side or inertial and potential terms, which dominates for large NRe and the right side or viscous terms, which dominates for small NRe. The potential gradient term could have been on the right side if the dimensionless pressure was defined differently, i.e., normalized with respect to ( μ U ) / L , the shear stress rather than kinetic energy. Note that the left side has only first derivatives of the spatial variables while the right side has second derivatives. We will see later that the left side may dominate for flow far from solid objects but the right side becomes important in the vicinity of solid surfaces.

The nature of the flow field can also be seen form the definition of the Reynolds number. The second expression is the ratio of the characteristic kinetic energy and the shear stress.

The alternate form of the dimensionless Navier-Stokes equation with the other definition of dimensionless pressure is as follows.

N R e D V * D t * = - * P * * + ( λ / μ + 1 ) * Θ * + * 2 v * P * * = P μ U / L

Dissipation of energy by viscous forces

If there was no dissipation of mechanical energy during fluid motion then kinetic energy and potential energy can be exchanged but the change in the sum of kinetic and potential energy would be equal to the work done to the system. However, viscous effects result in irreversible conversion of mechanical energy to internal energy or heat. This is known as viscous dissipation of energy. We will identify the components of mechanical energy in a flowing system before embarking on a total energy balance.

The rate that work W is done on fluid in a material volume V with a surface S is the integral of the product of velocity and the force at the surface.

d W d t = s v t ( n ) d S = s v T n d S = v ( v T ) d V

The last integrand is rather complicated and is better treated with index notation.

( v i T i j ) , j = T i j v i , j + v i T i j , j = T i j v i , j + v i ρ D v i D t - ρ f i = T i j v i , j + 1 2 ρ D v 2 D t - ρ f i v i ( v t ) = T : v + 1 2 ρ D v 2 D t - ρ f v

We made use of Cauchy's equation of motion to substitute for the divergence of the stress tensor. The integrals can be rearranged as follows.

Questions & Answers

a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
f(n)= 2n + 1
Samantha Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Transport phenomena. OpenStax CNX. May 24, 2010 Download for free at http://cnx.org/content/col11205/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Transport phenomena' conversation and receive update notifications?

Ask