<< Chapter < Page Chapter >> Page >

Relationship between forces in a hydraulic system

We can derive a relationship between the forces in the simple hydraulic system shown in [link] by applying Pascal’s principle. Note first that the two pistons in the system are at the same height, and so there will be no difference in pressure due to a difference in depth. Now the pressure due to F 1 size 12{F rSub { size 8{1} } } {} acting on area A 1 size 12{A rSub { size 8{1} } } {} is simply P 1 = F 1 A 1 size 12{P rSub { size 8{1} } = { {F rSub { size 8{1} } } over {A rSub { size 8{1} } } } } {} , as defined by P = F A size 12{P= { {F} over {A} } } {} . According to Pascal’s principle, this pressure is transmitted undiminished throughout the fluid and to all walls of the container. Thus, a pressure P 2 size 12{P rSub { size 8{2} } } {} is felt at the other piston that is equal to P 1 size 12{P rSub { size 8{1} } } {} . That is P 1 = P 2 size 12{P rSub { size 8{1} } =P rSub { size 8{2} } } {} .

But since P 2 = F 2 A 2 size 12{P rSub { size 8{2} } = { {F rSub { size 8{2} } } over {A rSub { size 8{2} } } } } {} , we see that F 1 A 1 = F 2 A 2 size 12{ { {F rSub { size 8{1} } } over {A rSub { size 8{1} } } } = { {F rSub { size 8{2} } } over {A rSub { size 8{2} } } } } {} .

This equation relates the ratios of force to area in any hydraulic system, providing the pistons are at the same vertical height and that friction in the system is negligible. Hydraulic systems can increase or decrease the force applied to them. To make the force larger, the pressure is applied to a larger area. For example, if a 100-N force is applied to the left cylinder in [link] and the right one has an area five times greater, then the force out is 500 N. Hydraulic systems are analogous to simple levers, but they have the advantage that pressure can be sent through tortuously curved lines to several places at once.

Calculating force of slave cylinders: pascal puts on the brakes

Consider the automobile hydraulic system shown in [link] .

When the driver applies force on the brake pedal the master cylinder transmits the same pressure to the slave cylinders but results in a larger force due to the larger area of the slave cylinders.
Hydraulic brakes use Pascal’s principle. The driver exerts a force of 100 N on the brake pedal. This force is increased by the simple lever and again by the hydraulic system. Each of the identical slave cylinders receives the same pressure and, therefore, creates the same force output F 2 size 12{F rSub { size 8{2} } } {} . The circular cross-sectional areas of the master and slave cylinders are represented by A 1 size 12{A rSub { size 8{1} } } {} and A 2 size 12{A rSub { size 8{2} } } {} , respectively

A force of 100 N is applied to the brake pedal, which acts on the cylinder—called the master—through a lever. A force of 500 N is exerted on the master cylinder. (The reader can verify that the force is 500 N using techniques of statics from Applications of Statics, Including Problem-Solving Strategies .) Pressure created in the master cylinder is transmitted to four so-called slave cylinders. The master cylinder has a diameter of 0.500 cm, and each slave cylinder has a diameter of 2.50 cm. Calculate the force F 2 size 12{F rSub { size 8{2} } } {} created at each of the slave cylinders.


We are given the force F 1 size 12{F rSub { size 8{1} } } {} that is applied to the master cylinder. The cross-sectional areas A 1 size 12{A rSub { size 8{1} } } {} and A 2 size 12{A rSub { size 8{2} } } {} can be calculated from their given diameters. Then F 1 A 1 = F 2 A 2 size 12{ { {F rSub { size 8{1} } } over {A rSub { size 8{1} } } } = { {F rSub { size 8{2} } } over {A rSub { size 8{2} } } } } {} can be used to find the force F 2 size 12{F rSub { size 8{2} } } {} . Manipulate this algebraically to get F 2 size 12{F rSub { size 8{2} } } {} on one side and substitute known values:


Pascal’s principle applied to hydraulic systems is given by F 1 A 1 = F 2 A 2 size 12{ { {F rSub { size 8{1} } } over {A rSub { size 8{1} } } } = { {F rSub { size 8{2} } } over {A rSub { size 8{2} } } } } {} :

F 2 = A 2 A 1 F 1 = πr 2 2 πr 1 2 F 1 = 1.25 cm 2 0.250 cm 2 × 500 N = 1 . 25 × 10 4 N . size 12{F rSub { size 8{2} } = { {A rSub { size 8{2} } } over {A rSub { size 8{1} } } } F rSub { size 8{1} } = { {πr rSub { size 8{2} } rSup { size 8{2} } } over {πr rSub { size 8{1} } rSup { size 8{2} } } } F rSub { size 8{1} } = { { left (1 "." "25"`"cm" right ) rSup { size 8{2} } } over { left (0 "." "250"`"cm" right ) rSup { size 8{2} } } } times "500"`N=1 "." "25" times "10" rSup { size 8{4} } `N} {}


This value is the force exerted by each of the four slave cylinders. Note that we can add as many slave cylinders as we wish. If each has a 2.50-cm diameter, each will exert 1 . 25 × 10 4 N . size 12{1 "." "25" times "10" rSup { size 8{4} } `N "." } {}

A simple hydraulic system, such as a simple machine, can increase force but cannot do more work than done on it. Work is force times distance moved, and the slave cylinder moves through a smaller distance than the master cylinder. Furthermore, the more slaves added, the smaller the distance each moves. Many hydraulic systems—such as power brakes and those in bulldozers—have a motorized pump that actually does most of the work in the system. The movement of the legs of a spider is achieved partly by hydraulics. Using hydraulics, a jumping spider can create a force that makes it capable of jumping 25 times its length!

Making connections: conservation of energy

Conservation of energy applied to a hydraulic system tells us that the system cannot do more work than is done on it. Work transfers energy, and so the work output cannot exceed the work input. Power brakes and other similar hydraulic systems use pumps to supply extra energy when needed.

Section summary

  • Pressure is force per unit area.
  • A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its container.
  • A hydraulic system is an enclosed fluid system used to exert forces.

Conceptual questions

Suppose the master cylinder in a hydraulic system is at a greater height than the slave cylinder. Explain how this will affect the force produced at the slave cylinder.


How much pressure is transmitted in the hydraulic system considered in [link] ? Express your answer in pascals and in atmospheres.

2.55 × 10 7 Pa ; or 251 atm

What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resting on the slave cylinder? The master cylinder has a 2.00-cm diameter and the slave has a 24.0-cm diameter.

A crass host pours the remnants of several bottles of wine into a jug after a party. He then inserts a cork with a 2.00-cm diameter into the bottle, placing it in direct contact with the wine. He is amazed when he pounds the cork into place and the bottom of the jug (with a 14.0-cm diameter) breaks away. Calculate the extra force exerted against the bottom if he pounded the cork with a 120-N force.

5 . 76 × 10 3 N size 12{5 "." "76" times "10" rSup { size 8{3} } `N} {} extra force

A certain hydraulic system is designed to exert a force 100 times as large as the one put into it. (a) What must be the ratio of the area of the slave cylinder to the area of the master cylinder? (b) What must be the ratio of their diameters? (c) By what factor is the distance through which the output force moves reduced relative to the distance through which the input force moves? Assume no losses to friction.

(a) Verify that work input equals work output for a hydraulic system assuming no losses to friction. Do this by showing that the distance the output force moves is reduced by the same factor that the output force is increased. Assume the volume of the fluid is constant. (b) What effect would friction within the fluid and between components in the system have on the output force? How would this depend on whether or not the fluid is moving?

(a) V = d i A i = d o A o d o = d i A i A o . size 12{ V=d rSub { size 8{i} } A rSub { size 8{i} } =d rSub { size 8{o} } A rSub { size 8{o} } drarrow d rSub { size 8{o} } =d rSub { size 8{i} } left ( { {A rSub { size 8{i} } } over {A rSub { size 8{o} } } } right ) "." } {}

Now, using equation:

F 1 A 1 = F 2 A 2 F o = F i A o A i . size 12{ { {F rSub { size 8{1} } } over {A rSub { size 8{1} } } } = { {F rSub { size 8{2} } } over {A rSub { size 8{2} } } } drarrow F rSub { size 8{o} } =F rSub { size 8{i} } left ( { {A rSub { size 8{o} } } over {A rSub { size 8{i} } } } right ) "." } {}


W o = F o d o = F i A o A i d i A i A o = F i d i = W i . size 12{W rSub { size 8{o} } =F rSub { size 8{o} } d rSub { size 8{o} } = left ( { {F rSub { size 8{i} } A rSub { size 8{o} } } over {A rSub { size 8{i} } } } right ) left ( { {d rSub { size 8{i} } A rSub { size 8{i} } } over {A rSub { size 8{o} } } } right )=F rSub { size 8{i} } d rSub { size 8{i} } =W rSub { size 8{i} } } {}

In other words, the work output equals the work input.

(b) If the system is not moving, friction would not play a role. With friction, we know there are losses, so that W out = W in W f size 12{W rSub { size 8{"out"} } =W rSub { size 8{"in"} } - W rSub { size 8{f} } } {} ; therefore, the work output is less than the work input. In other words, with friction, you need to push harder on the input piston than was calculated for the nonfriction case.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?