<< Chapter < Page Chapter >> Page >

Cleaning

During the processes described above, semiconductor wafers are subjected to physical handling that leads to significant contamination. Possible sources of physical contamination include:

  1. airborne bacteria,
  2. grease and wax from cutting oils and physical handling,
  3. abrasive particulates (usually, silica, silicon carbide, alumina, or diamond dust) from lapping, grinding or sawing operations,
  4. plasticizers which are derived from containers and wrapping in which the wafers are handled and shipped.

Chemical contamination may also occur as a result of improper cleaning after etch steps. Light-metal (especially sodium and potassium) species may be traced to impurities in etchant solutions and are chemisorbed on to the surface where they are particularly problematical for metal oxide semiconductor (MOS) based devices, although higher levels of such impurities are tolerable for bipolar devices. Heavy metal impurities (e.g., Cu, Au, Fe, and Ag) are usually caused by electrodeposition from etchant solutions during fabrication. While wafers are cleaned prior to shipping, contamination accumulated during shipping and storage necessitates that all wafers be subjected to scrupulous cleaning prior to fabrication. Furthermore, cleaning is required at each step during the fabrication process. Although wafer cleaning is a vital part of each fabrication step, it is convenient to discuss cleaning within the general topic of wafer fabrication.

Cleaning silicon

The first step in cleaning a Si wafer is removal of all physical contaminants. These contaminates are removed by rinsing the wafer in hot organic solvents such as 1,1,1-trichloroethane (Cl 3 CH 3 ) or xylene (C 6 H 4 Me 2 ), accompanied by mechanical scrubbing, ultrasonic agitation, or compressed gas jets. Removal of the majority of light metal contaminants is accomplished by rinsing in hot deionized water, however, complete removal requires a further more aggressive cleaning process. The most widely used cleaning method in the Si semiconductor industry is based on a two step, two solution sequence known as the “RCA Cleaning Method”.

The first solution consists of H 2 O-H 2 O 2 -NH 4 OH in a volume ratio of 5:1:1 to 7:2:1, which is used to remove organic contaminants and heavy metals. The oxidation of the remaining organic contaminants by the hydrogen peroxide (H 2 O 2 ) produces water soluble products. Similarly, metal contaminants such as cadmium, cobalt, copper, mercury, nickel, and silver are solubilized by the NH 4 OH through the formation of soluble amino complexes, e.g., [link] .

The second solution consists of H 2 O-H 2 O 2 -HCl in a 6:1:1 to 8:2:1 volume ratio and removes the Group I(1), II(2) and III(13) metals. In addition, the second solution prevents re-deposition of the metal contaminants. Each of the washing steps is carried out for 10 - 20 min. at 75 - 85 °C with rapid agitation. Finally, the wafers are blown dry under a stream of nitrogen gas.

Cleaning gaas

In principle GaAs wafers may be cleaned in a similar manner to silicon wafers. The first step involves successive cleaning with hot organic solvents such as 1,1,1-trichloroethane, acetone, and methanol, each for 5-10 minutes. GaAs wafers cleaned in this manner may be stored under methanol for short periods of time.

Most cleaning solutions for GaAs are actually etches. A typical solution is similar to the second RCA solution and consists of an 80:10:1 ratio of H 2 O-H 2 O 2 -HCl. This solution is generally used at elevated temperatures (70 °C) with short dip times since it has a very fast etch rate (4.0 μm/min).

Measurements, inspections and packaging

Quality control measurements of the semiconductor crystal and subsequent wafer are performed throughout the process as an essential part of the fabrication of wafers. From crystal and wafer shaping through the final wafer finishing steps, quality control measurements are used to ensure that the materials meets customer specifications, and that problems can be corrected before they create scrap material and thus avoid further processing of reject material. Quality control measurements can be broadly classified into mechanical, electrical, structural, and chemical.

Mechanical measurements are concerned with the physical dimensions of the wafer, including: thickness, flatness, bow, taper and edge contour. Electrical measurements usually include: resistivity and lateral resistivity gradient, carrier type and lifetime. Measurements giving information on the perfection of the semiconductor crystal lattice are classified in the structural category and include: testing for stacking faults, and dislocations. Routine chemical measurements are limited to the measurement of dissolved oxygen and carbon by Fourier transform infrared spectroscopy (FT-IR). Finished wafers are individually marked for the purpose of identification and traceability. Packaging helps protect the finished wafers from contamination during shipping and storage.

Industry standards defining in detail how quality control measurements are to be made and determining the acceptable ranges for measured values have been developed by the American Society of Testing Materials (ASTM) and the Semiconductor Equipment and Materials Institute (SEMI).

Bibliography

  • A. C. Bonora, Silicon Wafer Process Technology: Slicing, Etching, Polishing , Semiconductor Silicon 1977, Electrochem. Soc., Pennington, NJ (1977).
  • L. D. Dyer, in Proceeding of the low-cost solar array wafering workshop 1981 , DoE-JPL-21012-66, Jet Propulsion Lab., Pasadena CA (1982).
  • J. C. Dyment and G. A. Rozgonyi, J. Electrochem. Soc. , 1971, 118 , 1346.
  • H. Gerischer and W. Mindt, Electrochem. Acta , 1968, 13 , 1329.
  • P. D. Green, Solid State Electron. , 1976, 19 , 815.
  • C. A. Harper and R. M. Sompson, Electronic Materials&Processing Handbook , McGraw Hill, New York, 2nd Edition.
  • S. Iida and K. Ito, J. Electrochem. Soc. , 1971, 118 , 768.
  • W. Kern, J. Electrochem. Soc. , 1990, 137 , 1887.
  • Y. Mori and N. Watanabe, J. Electrochem. Soc. , 1978, 125 , 1510.
  • D. L. Partin, A. G. Milnes, and L. F. Vassamillet, J. Electrochem. Soc. , 1979, 126 , 1581.
  • D. W. Shaw, J. Electrochem. Soc. , 1966, 113 , 958.
  • F. Snimura, Semiconductor Silicon Crystal Technology , Academic Press, New York (1989).
  • D. R. Turner, J. Electrochem. Soc. , 1960, 107 , 810.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
cell is the smallest unit of the humanity biologically
Abraham
what is biology
Victoria Reply
what is biology
Abraham
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Biology is a branch of Natural science which deals/About living Organism.
Ahmedin Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask