<< Chapter < Page Chapter >> Page >

- Bước 1: kết hợp tất cả các khối nối tiếp, dùng biến đổi 1.

- Bước 2: kết hợp tất cả các khối song song, dùng biến đổi 2.

- Bước 3: giảm bớt các vòng hồi tiếp phụ, dùng biến đổi 4.

- Bước 4: dời các “điểm tổng” về bên trái và cacù “điểm lấy” về bên phải vòng chính, dùng biến đổi 7, 10 và 12.

- Bước 5: lặp lại các bước từ 1->4, cho đến khi được dạng chính tắc đối với một input nào đó .

- Bước 6: lặp lại các bước từ 1->5 đối với các input khác nếu cần .

Các biến đổi 3, 5, 6, 8, 9 và 11 đôi khi cũng cần đến .

Thí dụ 2.3 : Hãy thu gọn sơ đồ khối sau đây về dạng chính tắc.

Bước 1:

Bước 2:

Bước 3:

Bước 4: không dùng.

Bước 5:

Thí dụ 2.4 : Hãy thu gọn sơ đồ khối thí dụ trên bằng cách cô lập H1 (để H1 riêng)

Bước 1 và 2:

Không dùng bươc 3 lúc này, nhưng đi thăûng đến bước 4 .

Bước 4: dời điểm lấy 1 về phía sau khối [ ( G2+G3 )]

Sắp xếp lại các “điểm tổng “

Bước 3: thu gọn vòng phụ có chứa H2 .

Cuối cùng, áp dụng biến đổi 5 để di chuyển [1/( G1+G3)] khỏi vòng hồi tiếp .

Thí dụ 2.5 : Hãy thu gọn hệ sau đây về dạng hệ điều khiển hồi tiếp đơn vị.

Một thành phần phi tuyến ( trên đường truyền thẳng ) không thể thu gọn như biến đổi 5 được. Khối tuyến tính trên đường hồi tiếp có thể kết hợp vơí khối tuyến tính của đường truyền thẳng. Kết quả là:

Thí dụ 2.6 : Hãy xác định output C của hệ nhiều input sau đây :

Các bộ phận trong hệ đều tuyến tính, nên có thể áp dụng nguyên lý chồng chất .

- Cho u1=u2=0. Sơ đồ khối trở nên.

Ởû đó CR là output chỉ do sự tác đôïng riêng của R. từ phương trình (2.31

- Cho R=u2=0, Sơ đồ khối trở nên :

Ở đó C1 là đáp ứng chỉ do sự tác đôïng riêng của u1. Sắp xếp lại các khối :

Vậy:

C 1 = G 2 1 G 1 G 2 H 1 H 2 u 1 size 12{C rSub { size 8{1} } = left [ { {G rSub { size 8{2} } } over {1 - G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } H rSub { size 8{2} } } } right ]u rSub { size 8{1} } } {}

  • Cho R=u1=0. Sơ đồ khối trở nên :

Ởû đó C2 là đáp ứng do tác đôïng riêng của u2 .

Vậy:

Bằng sự chồng chất, đáp ứng của toàn hệ là:

C = G 1 G 2 R + G 2 U 1 + G 1 G 2 H 1 u 2 1 G 1 G 2 H 1 H 2 size 12{C= { {G rSub { size 8{1} } G rSub { size 8{2} } R+G rSub { size 8{2} } U rSub { size 8{1} } +G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } u rSub { size 8{2} } } over {1 - G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } H rSub { size 8{2} } } } } {} C = CR+C1+C2

Thí dụ 2.7:

Sơ đồ khối sau đây là một ví dụ về hệ nhiều input và nhiều output. Hãy xác định C1 và C2.

a)Trước hết bỏ qua C2. Xét hệ thống với 2 input R1 ,R2 và output C1.

- Đặt R2 =0 và kết hợp với các điểm tổng:

Như vậy, C11 là output ở C1, chỉ do R1 gây ra.

C 11 = G 1 R 1 1 G 1 G 2 G 3 G 4 size 12{C rSub { size 8{"11"} } = { {G rSub { size 8{1} } R rSub { size 8{1} } } over {1 - G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{3} } G rSub { size 8{4} } } } } {}

  • Đặt R1=0:

C12 là output ở C1, chỉ do R2 gây ra.

C 1 = C 11 + C 12 = G 1 R 1 G 1 G 3 G 4 R 2 1 G 1 G 2 G 3 G 4 size 12{C rSub { size 8{1} } =C rSub { size 8{"11"} } +C rSub { size 8{"12"} } = { {G rSub { size 8{1} } R rSub { size 8{1} } - G rSub { size 8{1} } G rSub { size 8{3} } G rSub { size 8{4} } R rSub { size 8{2} } } over {1 - G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{3} } G rSub { size 8{4} } } } } {} Vậy:

b. Bây giờ, bỏ qua C1. Xét hệ thống với 2 input R1,R2 và output C2.

Đặt R1=0.

Vậy :

- Đặt R2=0.

Vậy :

Cuối cùng: C2 =C21+C22 .

Bài tập chương ii

2.1: Tìm hàm chuển của 1 hệ thống mà input và output của nó liên hệ bằng phương trình vi phân:

d 2 y dt 2 + 3 dy dt + 2y = x + dx dt size 12{ { {d rSup { size 8{2} } y} over { ital "dt" rSup { size 8{2} } } } +3 { { ital "dy"} over { ital "dt"} } +2y=x+ { { ital "dx"} over { ital "dt"} } } {} .

2.2 : Một hệ thống chứa thời trể có phương trình vi phân:

d dt y ( t ) + y ( t ) = x ( t T ) size 12{ { {d} over { ital "dt"} } y \( t \) +y \( t \) =x \( t - T \) } {}

Tìm hàm chuyển của hệ.

2.3 : Vị trí Y của 1 vật có khối lượng không đổi M liên hệ với lực f đặt lên nó bởi phương trình vi phân:

M d 2 y dt 2 = f size 12{M { {d rSup { size 8{2} } y} over { ital "dt" rSup { size 8{2} } } } =f} {}

Xác định hàm chuyển tương quan giữa vị trí và lực.

2.4 : Một động cơ dc mang tải cho 1 moment tỉ lệ với dòng điện vào i. Nếu phương trình vi phân đối với động cơ và tải là:

J d 2 θ dt 2 = B dt = ki size 12{J { {d rSup { size 8{2} } θ} over { ital "dt" rSup { size 8{2} } } } =B { {dθ} over { ital "dt"} } = ital "ki"} {}

Trong đó J là quán tính rotor, B là hệ số ma sát.

Xác định hàm chuyển giữa dòng điện vào và vị trí trục rotor.

2.5 : Một xung lực được đặt vào ngõ vào của 1 hệ thống và ở ngõ ra được 1 hàm thời gian e-2t .

Tìm hàm chuyển của hệ.

2.6 : Đáp ứng xung lực của 1 hệ là tín hiệu hình sin. Xác định hàm chuyển của hệ và phương trình vi phân.

2.7 : Đáp ứng nấc của hệ thống là:

c = 1 7 3 e t + 3 2 e 2t 1 6 e 4t size 12{c=1 - { {7} over {3} } e rSup { size 8{ - t} } + { {3} over {2} } e rSup { size 8{ - 2t} } - { {1} over {6} } e rSup { size 8{ - 4t} } } {} .

Tìm hàm chuyển.

2.8 : Tìm hàm chuyển của các mạch bổ chính sau đây:

a)b)

c)d)

e)f)

2.9 : Tìm hàm chuyển của mạch điện gồm 2 mạch vẽ ở bài tập 2.8f nối tiếp.

2.10 : Xác định đáp ứng dốc (ramp) của 1 hệ có hàm chuyển:

P ( s ) = s 2 s 2 + ( 3 / RC ) s + 1 / R 2 C 2 size 12{P \( s \) = { {s rSup { size 8{2} } } over {s rSup { size 8{2} } + \( 3/ ital "RC" \) s+1/R rSup { size 8{2} } C rSup { size 8{2} } } } } {}

2.11 : Xem 2 Mạch điện vẽ ở bài tập 2.8d và 2.8e. Hàm chuyển của mạch 2.9d là:

P(s ) = a s + a size 12{ { {a} over {s+a} } } {} ; với a=1/RC.

Hỏi hàm chuyển của mạch 2.9e có bằng a s + a 2 size 12{ left ( { {a} over {s+a} } right ) rSup { size 8{2} } } {} không? Tại sao?

II.12 : Sơ đồ khối chính tắc của 1 hệ tự kiểm được vẽ như sau :

Xác định :

a) Hàm chuyển đường vòng GH.

b) Hàm chuyển vòng kín C/R.

c) Tỷ số sai biệt E/R.

d) Tỷ số B/R.

e) Phương trình đặc trưng.

2.13 : Thu gọn sơ đồ sau đây về dạng chính tắc và tìm output C. Cho k là hằng so.á

II.14 : Xác định hàm chuyển của hệ thống trong sơ đồ khối sau đây rồi đặc H1 =1/G1 ; H2 =1/G2 .

II.15 : Xác định C/R cho mỗi hệ sau đây :

a).

b).

c).

2.16 : Thu gọn các sơ đồ khối sau đây về dạng chính tắc:

2.17 : Xem sơ đồ khối của 1 hệ như sau . Xác định đáp ứng ở ngõ ra.

Lời giải chương ii

2.1 : Lấy biến đổi laplace phương trình trên, bỏ qua các số hạng do điều

kiện đầu.

S2 Y(s)+3SY(s) +2Y(s)=X(s)+SX(s)

P ( s ) = Y ( s ) X ( s ) = s + 1 s 2 + 3s + 2 size 12{P \( s \) = { {Y \( s \) } over {X \( s \) } } = left [ { {s+1} over {s rSup { size 8{2} } +3s+2} } right ]} {}

Hàm chuyển của hệ : P ( s ) = s + 1 s 2 + 3s + 2 size 12{P \( s \) = left [ { {s+1} over {s rSup { size 8{2} } +3s+2} } right ]} {}

2.2 : Lấy biến đổi laplace phương trình trên, bỏ qua điều kiện đầu:

SY(s)+Y(s)=e-STX(s).

Hàm chuyển của hệ là:

P ( s ) = Y ( s ) X ( s ) = e ST s + 1 size 12{P \( s \) = { {Y \( s \) } over {X \( s \) } } = { {e rSup { size 8{ - ital "ST"} } } over {s+1} } } {}

2.3 : Lấy laplace phương trình:

Ms2Y(s)=F(s)

Hàm chuyển : P ( s ) = Y ( s ) F ( s ) = 1 Ms 2 size 12{P \( s \) = { {Y \( s \) } over {F \( s \) } } = { {1} over { ital "Ms" rSup { size 8{2} } } } } {}

2.4 : Biến đổi laplace của phương trình: (JS2+BS).(s)=KI(s)

Hàm chuyển: P ( s ) = θ ( s ) I ( s ) = K s ( Js + B ) size 12{P \( s \) = { {θ \( s \) } over {I \( s \) } } = { {K} over {s \( ital "Js"+B \) } } } {}

2.5 : Hàm chuyển là : P(s)=C(s)/R(s).

Và R(S) =1, khi r(t)=(t).

Vậy: P ( s ) = C ( s ) = 1 s + 2 size 12{P \( s \) =C \( s \) = { {1} over {s+2} } } {}

II.6 : Hàm chuyển của hệ là phương trình laplace của đáp ứng xung lực của

nó:

P ( s ) = 1 s 2 + 1 size 12{P \( s \) = { {1} over {s rSup { size 8{2} } +1} } } {}

Dùng toán tử D: P ( D ) = 1 D 2 + 1 = c r size 12{P \( D \) = { {1} over {D rSup { size 8{2} } +1} } = { {c} over {r} } } {}

D2c+c=r hoặc : d 2 c dt 2 + c = r size 12{ { {d rSup { size 8{2} } c} over { ital "dt" rSup { size 8{2} } } } +c=r} {}

2.7 :Vì đạo hàm của hàm nấc là 1 xung lực, nên đáp ứng xung lực của hệ là

p ( t ) = dc dt = 7 3 e t 3 e 2t + 2 3 e 4t size 12{p \( t \) = { { ital "dc"} over { ital "dt"} } = { {7} over {3} } e rSup { size 8{ - t} } - 3e rSup { size 8{ - 2t} } + { {2} over {3} } e rSup { size 8{ - 4t} } } {}

Biến đổi laplace của P(t) và hàm chuyển:

P ( s ) = 7 3 ( s + 1 ) + 3 s + 2 + 2 3 ( s + 4 ) = s + 8 ( s + 1 ) ( s + 2 ) ( s + 4 ) size 12{P \( s \) = { {7} over {3 \( s+1 \) } } + { { - 3} over {s+2} } + { {2} over {3 \( s+4 \) } } = { {s+8} over { \( s+1 \) \( s+2 \) \( s+4 \) } } } {}

2.8 :

a) P ( s ) = v 0 ( s ) v i ( s ) = s + a s + b size 12{P \( s \) = { {v rSub { size 8{0} } \( s \) } over {v rSub { size 8{i} } \( s \) } } = { {s+a} over {s+b} } } {} ; với a = 1 R 1 C size 12{a= { {1} over {R rSub { size 8{1} } C} } } {} b = 1 R 1 C + 1 R 2 C size 12{b= { {1} over {R rSub { size 8{1} } C} } + { {1} over {R rSub { size 8{2} } C} } } {}

b) P ( s ) = a ( s + b ) b ( s + a ) size 12{P \( s \) = { {a \( s+b \) } over {b \( s+a \) } } } {} với a = 1 ( R 1 + R 2 ) C size 12{a= { {1} over { \( R rSub { size 8{1} } +R rSub { size 8{2} } \) C} } } {} b = 1 R 2 C size 12{b= { {1} over {R rSub { size 8{2} } C} } } {}

c) P ( s ) = ( s + a 1 ) ( s + b 2 ) ( s + a 2 ) ( s + b 1 ) size 12{P \( s \) = { { \( s+a rSub { size 8{1} } \) \( s+b rSub { size 8{2} } \) } over { \( s+a rSub { size 8{2} } \) \( s+b rSub { size 8{1} } \) } } } {} với a 1 = 1 R 1 C 1 size 12{a rSub { size 8{1} } = - { {1} over {R rSub { size 8{1} } C rSub { size 8{1} } } } } {} b 2 = 1 R 2 C 2 size 12{b rSub { size 8{2} } = - { {1} over {R rSub { size 8{2} } C rSub { size 8{2} } } } } {}

b 1 a 2 = a 1 b 2 size 12{b rSub { size 8{1} } a rSub { size 8{2} } =a rSub { size 8{1} } b rSub { size 8{2} } } {} ; b 1 + a 2 = a 1 + b 2 + 1 R 2 C 1 size 12{b rSub { size 8{1} } +a rSub { size 8{2} } =a rSub { size 8{1} } +b rSub { size 8{2} } + { {1} over {R rSub { size 8{2} } C rSub { size 8{1} } } } } {}

d) P ( s ) = 1 RC ( s + 1 RC ) size 12{P \( s \) = { {1} over { ital "RC" \( s+ { {1} over { ital "RC"} } \) } } } {}

e) P ( s ) = 1 R 1 R 2 C 1 C 2 s 2 + ( R 1 C 1 + R 1 C 2 + R 2 C 2 ) s + 1 size 12{P \( s \) = { {1} over {R rSub { size 8{1} } R rSub { size 8{2} } C rSub { size 8{1} } C rSub { size 8{2} } s rSup { size 8{2} } + \( R rSub { size 8{1} } C rSub { size 8{1} } +R rSub { size 8{1} } C rSub { size 8{2} } +R rSub { size 8{2} } C rSub { size 8{2} } \) s+1} } } {}

P ( s ) = s s + 1 RC size 12{P \( s \) = { {s} over {s+ { {1} over { ital "RC"} } } } } {}

2.9 :

P(s)= P ( s ) = s 2 s 2 + ( 3 RC ) s + 1 R 2 C 2 size 12{P \( s \) = { {s rSup { size 8{2} } } over {s rSup { size 8{2} } + \( { {3} over { ital "RC"} } \) s+ { {1} over {R rSup { size 8{2} } C rSup { size 8{2} } } } } } } {}

2.10 :

c(t)= c ( t ) = 1 4 1 4 e 2t + 1 2 t size 12{c \( t \) = { {1} over {4} } - { {1} over {4} } e rSup { size 8{ - 2t} } + { {1} over {2} } t} {}

2.11 : Sinh viên tự giải.

2.12 :

a) GH = K 1 K 2 s + p size 12{ ital "GH"= { {K rSub { size 8{1} } K rSub { size 8{2} } } over {s+p} } } {}

b) C R = G 1 GH size 12{ { {C} over {R} } = { {G} over {1 - ital "GH"} } } {} (với dấu trừ cho biết hồi tiếp dương).

C R = K 1 s ( s + p K 1 K 2 ) size 12{ { {C} over {R} } = { {K rSub { size 8{1} } } over {s \( s+p - K rSub { size 8{1} } K rSub { size 8{2} } \) } } } {}

c) E R = 1 1 GH = s + p s + p K 1 K 2 size 12{ { {E} over {R} } = { {1} over {1 - ital "GH"} } = { {s+p} over {s+p - K rSub { size 8{1} } K rSub { size 8{2} } } } } {}

d) B R = 1 1 GH = K 1 K 2 s + p K 1 K 2 size 12{ { {B} over {R} } = { {1} over {1 - ital "GH"} } = { {K rSub { size 8{1} } K rSub { size 8{2} } } over {s+p - K rSub { size 8{1} } K rSub { size 8{2} } } } } {}

e) Phương trình đặc trưng của hệ được xác định bởi: 1 GH=0

Trường hợp này vì là hồi tiếp dương nên :1-GH=0

=>s+p-K1K2 = 0

2.13 :

C = KR ( 1 + K ) s + ( 1 + 0 . 1K ) size 12{C= { { ital "KR"} over { \( 1+K \) s+ \( 1+0 "." 1K \) } } } {}

2.14 : Thu gọn các vòng trong.

2.15 : Sinh viên tự giải.

2.16 :

2.17 :

y(t)=5(cost-2sin2t –t2).

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Cơ sở tự động học. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10756/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở tự động học' conversation and receive update notifications?

Ask