<< Chapter < Page Chapter >> Page >

Formaldehyde, an aldehyde with the formula HCHO, is a colorless gas with a pungent and irritating odor. It is sold in an aqueous solution called formalin, which contains about 37% formaldehyde by weight. Formaldehyde causes coagulation of proteins, so it kills bacteria (and any other living organism) and stops many of the biological processes that cause tissue to decay. Thus, formaldehyde is used for preserving tissue specimens and embalming bodies. It is also used to sterilize soil or other materials. Formaldehyde is used in the manufacture of Bakelite, a hard plastic having high chemical and electrical resistance.

Dimethyl ketone, CH 3 COCH 3 , commonly called acetone, is the simplest ketone. It is made commercially by fermenting corn or molasses, or by oxidation of 2-propanol. Acetone is a colorless liquid. Among its many uses are as a solvent for lacquer (including fingernail polish), cellulose acetate, cellulose nitrate, acetylene, plastics, and varnishes; as a paint and varnish remover; and as a solvent in the manufacture of pharmaceuticals and chemicals.

Carboxylic acids and esters

The odor of vinegar is caused by the presence of acetic acid, a carboxylic acid, in the vinegar. The odor of ripe bananas and many other fruits is due to the presence of esters, compounds that can be prepared by the reaction of a carboxylic acid with an alcohol. Because esters do not have hydrogen bonds between molecules, they have lower vapor pressures than the alcohols and carboxylic acids from which they are derived (see [link] ).

There are nine structures represented in this figure. The first is labeled, “raspberry,” and, “iso-butyl formate.” It shows an H atom with a line going up and to the right which then goes down and to the right. It goes up and to the right again and down and to the right and up and to the right. At the first peak is a double bond to an O atom. At the first trough is an O atom. At the second trough, there is a line going straight down. The second is labeled, “apple,” and, “butyl acetate.” There is a line that goes up and to the right, down and to the right, up and to the right, and down and to the right. At the second peak is a double bond to an O atom. At the end, on the right is O C H subscript 3. The third is labeled, “pineapple,” and, “ethyl butyrate.” It is a line that goes up and to the right, down and to the right, up and to the right, down and to the right, up and to the right, and down and to the right. At the second peak is a double bond to an O atom and at the second trough is an O atom. The fourth is labeled, “rum,” and “propyl isobutyrate.” It shows a line that goes down and to the right, up and to the right, down and to the right, up and to the right, down and to the right and up and to the right. The first complete peak has a double bond to an O atom and the second trough has an O atom. The fifth is labeled, “peach,” and “benzyl acetate.” It shows a line that goes up and to the right, down and to the right, up and to the right and down and to the right. This line connects to a hexagon with a circle inside it. The first peak has a double bond to an O atom and the first trough has an O atom. The sixth is labeled, “orange,” and, “octyl acetate.” It shows a line that goes up and to the right and down and to the right and up and to the right and down and to the right and up and to the right and down and to the right and up and to the right and down and to the right and up and to the right and down and to the right. The first peak has a double bond to an O atom and the first complete trough has and an O atom. The seventh is labeled, “wintergreen,” and “methyl salicylate.” It shows a hexagon with a circle inside of it. On the right, is a bond down and to the right to an O H group. On the right is a bond to a line that goes up and to the right and down and two the right and up and to the right. At the first peak is a double bond to an O atom, the next trough shows and O atom and at the end of the line is a C H subscript 3 group. The eighth is labeled, “honey,” and “methyl phenylacetate.” It shows a hexagon with a circle inside of it. It shows it connecting to a line on the right that goes down and to the right then up and to the right and down and to the right and up and to the right. At the first peak that is not part of the hexagon is a double bond to an O atom. At the last trough is an O atom. The ninth is labeled, “strawberry,” and “ethyl methylphenylglycidate.” This shows a hexagon with a circle inside of it. On the right, it connects to a line that goes up and to the right and down and to the right and up and to the right and down and to the right and up and to the right and down and to the right. At the first peak is a line that extends above and below. Below, it connects to an O atom. At the next trough, the line extends down and to the left to the same O atom. At the next peak is a double bond to an O atom and at the next trough is an O atom.
Esters are responsible for the odors associated with various plants and their fruits.

Both carboxylic acids and esters contain a carbonyl group with a second oxygen atom bonded to the carbon atom in the carbonyl group by a single bond. In a carboxylic acid, the second oxygen atom also bonds to a hydrogen atom. In an ester, the second oxygen atom bonds to another carbon atom. The names for carboxylic acids and esters include prefixes that denote the lengths of the carbon chains in the molecules and are derived following nomenclature rules similar to those for inorganic acids and salts (see these examples):

Two structures are shown. The first structure is labeled, “ethanoic acid,” and, “acetic acid.” This structure indicates a C atom to which H atoms are bonded above, below and to the left. To the right of this in red is a bonded group comprised of a C atom to which an O atom is double bonded above. To the right of the red C atom, an O atom is bonded which has an H atom bonded to its right. Both O atoms have two sets of electron dots. The second structure is labeled, “methyl ethanoate,” and, “methyl acetate.” This structure indicates a C atom to which H atoms are bonded above, below and to the left. In red, bonded to the right is a C atom with a double bonded O atom above and a single bonded O atom to the right. To the right of this last O atom in black is another C atom to which H atoms are bonded above, below and to the right. Both O atoms have two pairs of electron dots.

The functional groups for an acid and for an ester are shown in red in these formulas.

The hydrogen atom in the functional group of a carboxylic acid will react with a base to form an ionic salt:

A chemical reaction is shown. On the left, a structure of propionic acid is indicated. This structure includes a 2 carbon hydrocarbon group on the left end in black. Above, below, and to the left, H atoms are bonded. This group is bonded to a red group comprised of a C atom to which an O atom is double bonded above. To the right of the red C atom, an O atom is connected with a single bond. To the right of the O atom, an H atom is bonded. To the right of this structure appears a plus and N a O H. Following the reaction arrow, the propionate ion is shown. This structure is in brackets. Appearing inside the brackets, is a 2 carbon hydrocarbon group on the left end. Above, below, and to the left, H atoms are bonded. To the right of this group, a group in red is attached comprised of a C atom to which an O atom is double bonded above and a second O atom is single bonded to the right. Outside the brackets appears a superscript minus symbol. This is followed by a plus sign, N a superscript plus another plus sign and H subscript 2 O. The singly bonded O atom in the propionate ion structure has 3 pairs of electron dots. All other O atoms have two pairs of electron dots.

Carboxylic acids are weak acids (see the chapter on acids and bases), meaning they are not 100% ionized in water. Generally only about 1% of the molecules of a carboxylic acid dissolved in water are ionized at any given time. The remaining molecules are undissociated in solution.

We prepare carboxylic acids by the oxidation of aldehydes or alcohols whose –OH functional group is located on the carbon atom at the end of the chain of carbon atoms in the alcohol:

A chemical reaction with two arrows is shown. On the left, an alcohol, indicated with a C atom to which an R group is bonded to the left, H atoms are bonded above and below, and in red, a single bonded O atom with an H atom bonded to the right is shown. Following the first reaction arrow, an aldehyde is shown. This structure is represented with an R group bonded to a red C atom to which an H atom is bonded above and to the right, and an O atom is double bonded below and to the right. Appearing to the right of the second arrow, is a carboxylic acid comprised of an R group bonded to a C atom to which, in red, an O atom is single bonded with an H atom bonded to its right side. A red O is double bonded below and to the right. All O atoms have two pairs of electron dots.

Esters are produced by the reaction of acids with alcohols. For example, the ester ethyl acetate, CH 3 CO 2 CH 2 CH 3 , is formed when acetic acid reacts with ethanol:

A chemical reaction is shown. On the left, a C H subscript 3 group bonded to a red C atom. The C atom forms a double bond with an O atom which is also in red. The C atom is also bonded to an O atom which is bonded to an H atom, also in red. A plus sign is shown, which is followed by H O C H subscript 2 C H subscript 3. The H O group is in red. Following a reaction arrow, a C H subscript 3 group is shown which is bonded to a red C atom with a double bonded O atom and a single bonded O. To the right of this single bonded O atom, a C H subscript 2 C H subscript 3 group is attached and shown in black. This structure is followed by a plus sign and H subscript 2 O. The O atoms in the first structure on the left and the structure following the reaction arrow have two pairs of electron dots.

The simplest carboxylic acid is formic acid, HCO 2 H, known since 1670. Its name comes from the Latin word formicus , which means “ant”; it was first isolated by the distillation of red ants. It is partially responsible for the pain and irritation of ant and wasp stings, and is responsible for a characteristic odor of ants that can be sometimes detected in their nests.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask