<< Chapter < Page Chapter >> Page >
H 2 ( g ) 2 H ( g ) Δ H = 436 kJ

Conversely, the same amount of energy is released when one mole of H 2 molecules forms from two moles of H atoms:

2H ( g ) H 2 ( g ) Δ H = −436 kJ

Pure vs. polar covalent bonds

If the atoms that form a covalent bond are identical, as in H 2 , Cl 2 , and other diatomic molecules, then the electrons in the bond must be shared equally. We refer to this as a pure covalent bond    . Electrons shared in pure covalent bonds have an equal probability of being near each nucleus.

In the case of Cl 2 , each atom starts off with seven valence electrons, and each Cl shares one electron with the other, forming one covalent bond:

Cl + Cl Cl 2

The total number of electrons around each individual atom consists of six nonbonding electrons and two shared (i.e., bonding) electrons for eight total electrons, matching the number of valence electrons in the noble gas argon. Since the bonding atoms are identical, Cl 2 also features a pure covalent bond.

When the atoms linked by a covalent bond are different, the bonding electrons are shared, but no longer equally. Instead, the bonding electrons are more attracted to one atom than the other, giving rise to a shift of electron density toward that atom. This unequal distribution of electrons is known as a polar covalent bond    , characterized by a partial positive charge on one atom and a partial negative charge on the other. The atom that attracts the electrons more strongly acquires the partial negative charge and vice versa. For example, the electrons in the H–Cl bond of a hydrogen chloride molecule spend more time near the chlorine atom than near the hydrogen atom. Thus, in an HCl molecule, the chlorine atom carries a partial negative charge and the hydrogen atom has a partial positive charge. [link] shows the distribution of electrons in the H–Cl bond. Note that the shaded area around Cl is much larger than it is around H. Compare this to [link] , which shows the even distribution of electrons in the H 2 nonpolar bond.

We sometimes designate the positive and negative atoms in a polar covalent bond using a lowercase Greek letter “delta,” δ, with a plus sign or minus sign to indicate whether the atom has a partial positive charge (δ+) or a partial negative charge (δ–). This symbolism is shown for the H–Cl molecule in [link] .

Two diagrams are shown and labeled “a” and “b.” Diagram a shows a small sphere labeled, “H” and a larger sphere labeled, “C l” that overlap slightly. Both spheres have a small dot in the center. Diagram b shows an H bonded to a C l with a single bond. A dipole and a positive sign are written above the H and a dipole and negative sign are written above the C l. An arrow points toward the C l with a plus sign on the end furthest from the arrow’s head near the H.
(a) The distribution of electron density in the HCl molecule is uneven. The electron density is greater around the chlorine nucleus. The small, black dots indicate the location of the hydrogen and chlorine nuclei in the molecule. (b) Symbols δ+ and δ– indicate the polarity of the H–Cl bond.


Whether a bond is nonpolar or polar covalent is determined by a property of the bonding atoms called electronegativity    . Electronegativity is a measure of the tendency of an atom to attract electrons (or electron density) towards itself. It determines how the shared electrons are distributed between the two atoms in a bond. The more strongly an atom attracts the electrons in its bonds, the larger its electronegativity. Electrons in a polar covalent bond are shifted toward the more electronegative atom; thus, the more electronegative atom is the one with the partial negative charge. The greater the difference in electronegativity, the more polarized the electron distribution and the larger the partial charges of the atoms.

Questions & Answers

what is a balanced equation 4 trioxonitrate (V)acid and sodium hydroxide?
Marcel Reply
proved ur Worth: If A is a of trioxonitrate(V)acid,HNO3' of unknown concentration .B is a standard solution of sodium hydroxide containing 4.00g per dm cube of solution.25cm cube portions solution B required an average of 24.00cm cube of solution A for neutralization,using 2 drops of methyl orange.
calculate the concentration of solution B in moles per dm cube
calculate the concentration of solution A and B in moles per DM cube
finally calculate the concentration in g/dm cube of HNO3 in solution A (H=1,N=14,O=16,Na=23)
wat is electrolysis?
Mgbachi Reply
it is the chemical decomposition of a substance when electric current is passed through it either in molten form or aqueous solution
list the side effect of chemical industries
Chelsea Reply
how do you ionise an atom
Rabeka Reply
many ways ,but one of them is when the atom becomes heated to a certain temperature the surface electron becomes too energetic and leaves the atom because the attraction between the nucleus and the electron becomes overpowered by the energetic eletron
also hitting of two atoms can cause transfer of surface electrons
and when this transfers occur the atom becomes ionised
who is doing Cape chemistry tomorrow?
caramel Reply
What is hybridization
edmondnti Reply
the mix between different breeds of species in one
it is the blending of orbitals.
the mixing of orbital
are covalent bonds influenced by factors such as temperature and pressure?
patrick Reply
what is catalyst used for mirror test
Sanjay Reply
when an atom looses electron, what does it become?
Abdullahi Reply
it's oxidized and called an ion
Now, I get it
can you give an example please, if you don't mind
a positive ion,become positively charged/a cation.
sodium plus one is simple cation is exmpl
Taking Sodium as example..... it carries a positive charge which means it is positively charged.....when it gains an electron, it is reduced cuz an electron is negatively charged.....also when an atom looses an electron, it becomes positively charged and when it gains, it becomes negatively charged.
typically, ionization is the process where an atom looses or gains electron(s) to form ion(s) either a positively or negatively
what is copper
Bryan Reply
just an element
Why is water a single covalent bond?
Mohamed Reply
nitrogen is a gas whereas phosphorus is solid .Explain.
Jacky Reply
can you explain what you are needing it now better than maybe I'm just not interpreting it what you're needing to know
cool nitrogen down to around negative 270 °F and it will be solid. now they are both solid
they are different elements and dats how they are pal.....check the periodic table
Nitrogen is a diatomic molecule with relatively weak van de waals forces between the molecules. These forces are overcome when the solid melts or liquid evaporates. Phosphorus forms larger molecules consisting of four phosphorus atoms in a tetradedral shape. The intermolecular forces are stronger
whats a base
Daksalma Reply
A base is a substance which will neutralize an acid to yield salt and water only
base is a substance that produces OH(aq) ions in aqueous solution. Strong soluable bases are in water and are completely dislocated. Therefore weak base ionize slightly...
a base is a substance that neutralise and acid to form salt and water
write electrolysis of bright solution using either carbon or platinum and write the reaction at the anode or at the cathode
Abdullah Reply
what is the H3O of a solution with the pH of 2.5
Sgt.Elliott_98 Reply
pH<7, therefore there are only H3O+HX3OX+particles in the solution. [H3O+]=10−pH=10−6.99=1.02⋅10−7[HX3OX+]=10−pH=10−6.99=1.02⋅10−7 When the pH is smaller than 6 or greater than 8, one will not notice the difference, but here it is logarithmically speaking  and I'll give you another one if this is ki
if I'm answering and interpreting what you're asking correctly
When the pH is smaller than 6 or greater than 8, one will not notice the difference, but here it is logarithmically speaking 
sorry I don't know why that sent again
We have [H3O+]=10−pH=10−6.99=1.02⋅10−7[HX3OX+]=10−pH=10−6.99=1.02⋅10−7 and [OH−]=10−pOH=10−7.01=9.77⋅10−8[OHX−]=10−pOH=10−7.01=9.77⋅10−8.  Because of H3O++OH−⟶2H2OHX3OX++OHX−⟶2HX2O we are left with [H3O+]=1.02⋅10−7−9.77⋅10−8=4.6⋅10−9
Practice Key Terms 5

Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?