<< Chapter < Page Chapter >> Page >

Note that when solving a related-rates problem, it is crucial not to substitute known values too soon. For example, if the value for a changing quantity is substituted into an equation before both sides of the equation are differentiated, then that quantity will behave as a constant and its derivative will not appear in the new equation found in step 4. We examine this potential error in the following example.

Examples of the process

Let’s now implement the strategy just described to solve several related-rates problems. The first example involves a plane flying overhead. The relationship we are studying is between the speed of the plane and the rate at which the distance between the plane and a person on the ground is changing.

An airplane flying at a constant elevation

An airplane is flying overhead at a constant elevation of 4000 ft . A man is viewing the plane from a position 3000 ft from the base of a radio tower. The airplane is flying horizontally away from the man. If the plane is flying at the rate of 600 ft/sec , at what rate is the distance between the man and the plane increasing when the plane passes over the radio tower?

Step 1. Draw a picture, introducing variables to represent the different quantities involved.

A right triangle is made with a person on the ground, an airplane in the air, and a radio tower at the right angle on the ground. The hypotenuse is s, the distance on the ground between the person and the radio tower is x, and the side opposite the person (that is, the height from the ground to the airplane) is 4000 ft.
An airplane is flying at a constant height of 4000 ft. The distance between the person and the airplane and the person and the place on the ground directly below the airplane are changing. We denote those quantities with the variables s and x , respectively.

As shown, x denotes the distance between the man and the position on the ground directly below the airplane. The variable s denotes the distance between the man and the plane. Note that both x and s are functions of time. We do not introduce a variable for the height of the plane because it remains at a constant elevation of 4000 ft . Since an object’s height above the ground is measured as the shortest distance between the object and the ground, the line segment of length 4000 ft is perpendicular to the line segment of length x feet, creating a right triangle.

Step 2. Since x denotes the horizontal distance between the man and the point on the ground below the plane, d x / d t represents the speed of the plane. We are told the speed of the plane is 600 ft/sec. Therefore, d x d t = 600 ft/sec. Since we are asked to find the rate of change in the distance between the man and the plane when the plane is directly above the radio tower, we need to find d s / d t when x = 3000 ft .

Step 3. From the figure, we can use the Pythagorean theorem to write an equation relating x and s :

[ x ( t ) ] 2 + 4000 2 = [ s ( t ) ] 2 .

Step 4. Differentiating this equation with respect to time and using the fact that the derivative of a constant is zero, we arrive at the equation

x d x d t = s d s d t .

Step 5. Find the rate at which the distance between the man and the plane is increasing when the plane is directly over the radio tower. That is, find d s d t when x = 3000 ft . Since the speed of the plane is 600 ft/sec , we know that d x d t = 600 ft/sec . We are not given an explicit value for s ; however, since we are trying to find d s d t when x = 3000 ft , we can use the Pythagorean theorem to determine the distance s when x = 3000 and the height is 4000 ft . Solving the equation

3000 2 + 4000 2 = s 2

for s , we have s = 5000 ft at the time of interest. Using these values, we conclude that d s / d t is a solution of the equation

( 3000 ) ( 600 ) = ( 5000 ) · d s d t .

Therefore,

d s d t = 3000 · 600 5000 = 360 ft/sec .

Note : When solving related-rates problems, it is important not to substitute values for the variables too soon. For example, in step 3, we related the variable quantities x ( t ) and s ( t ) by the equation

[ x ( t ) ] 2 + 4000 2 = [ s ( t ) ] 2 .

Since the plane remains at a constant height, it is not necessary to introduce a variable for the height, and we are allowed to use the constant 4000 to denote that quantity. However, the other two quantities are changing. If we mistakenly substituted x ( t ) = 3000 into the equation before differentiating, our equation would have been

3000 2 + 4000 2 = [ s ( t ) ] 2 .

After differentiating, our equation would become

0 = s ( t ) d s d t .

As a result, we would incorrectly conclude that d s d t = 0 .

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask