<< Chapter < Page Chapter >> Page >

Definition

(Informal) We say a function f has an infinite limit at infinity and write

lim x f ( x ) = .

if f ( x ) becomes arbitrarily large for x sufficiently large. We say a function has a negative infinite limit at infinity and write

lim x f ( x ) = .

if f ( x ) < 0 and | f ( x ) | becomes arbitrarily large for x sufficiently large. Similarly, we can define infinite limits as x .

Formal definitions

Earlier, we used the terms arbitrarily close , arbitrarily large , and sufficiently large to define limits at infinity informally. Although these terms provide accurate descriptions of limits at infinity, they are not precise mathematically. Here are more formal definitions of limits at infinity. We then look at how to use these definitions to prove results involving limits at infinity.

Definition

(Formal) We say a function f has a limit at infinity    , if there exists a real number L such that for all ε > 0 , there exists N > 0 such that

| f ( x ) L | < ε

for all x > N . In that case, we write

lim x f ( x ) = L

(see [link] ).

We say a function f has a limit at negative infinity if there exists a real number L such that for all ε > 0 , there exists N < 0 such that

| f ( x ) L | < ε

for all x < N . In that case, we write

lim x f ( x ) = L .
The function f(x) is graphed, and it has a horizontal asymptote at L. L is marked on the y axis, as is L + ॉ and L – ॉ. On the x axis, N is marked as the value of x such that f(x) = L + ॉ.
For a function with a limit at infinity, for all x > N , | f ( x ) L | < ε .

Earlier in this section, we used graphical evidence in [link] and numerical evidence in [link] to conclude that lim x ( 2 + 1 x ) = 2 . Here we use the formal definition of limit at infinity to prove this result rigorously.

Use the formal definition of limit at infinity to prove that lim x ( 2 + 1 x ) = 2 .

Let ε > 0 . Let N = 1 ε . Therefore, for all x > N , we have

| 2 + 1 x 2 | = | 1 x | = 1 x < 1 N = ε
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the formal definition of limit at infinity to prove that lim x ( 3 1 x 2 ) = 3 .

Let ε > 0 . Let N = 1 ε . Therefore, for all x > N , we have

| 3 1 x 2 3 | = 1 x 2 < 1 N 2 = ε

Therefore, lim x ( 3 1 / x 2 ) = 3 .

Got questions? Get instant answers now!

We now turn our attention to a more precise definition for an infinite limit at infinity.

Definition

(Formal) We say a function f has an infinite limit at infinity    and write

lim x f ( x ) =

if for all M > 0 , there exists an N > 0 such that

f ( x ) > M

for all x > N (see [link] ).

We say a function has a negative infinite limit at infinity and write

lim x f ( x ) =

if for all M < 0 , there exists an N > 0 such that

f ( x ) < M

for all x > N .

Similarly we can define limits as x .

The function f(x) is graphed. It continues to increase rapidly after x = N, and f(N) = M.
For a function with an infinite limit at infinity, for all x > N , f ( x ) > M .

Earlier, we used graphical evidence ( [link] ) and numerical evidence ( [link] ) to conclude that lim x x 3 = . Here we use the formal definition of infinite limit at infinity to prove that result.

Use the formal definition of infinite limit at infinity to prove that lim x x 3 = .

Let M > 0 . Let N = M 3 . Then, for all x > N , we have

x 3 > N 3 = ( M 3 ) 3 = M .

Therefore, lim x x 3 = .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the formal definition of infinite limit at infinity to prove that lim x 3 x 2 = .

Let M > 0 . Let N = M 3 . Then, for all x > N , we have

3 x 2 > 3 N 2 = 3 ( M 3 ) 2 2 = 3 M 3 = M

Got questions? Get instant answers now!

End behavior

The behavior of a function as x ± is called the function’s end behavior    . At each of the function’s ends, the function could exhibit one of the following types of behavior:

  1. The function f ( x ) approaches a horizontal asymptote y = L .
  2. The function f ( x ) or f ( x ) .
  3. The function does not approach a finite limit, nor does it approach or . In this case, the function may have some oscillatory behavior.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask