<< Chapter < Page Chapter >> Page >
  • Explain the three conditions for continuity at a point.
  • Describe three kinds of discontinuities.
  • Define continuity on an interval.
  • State the theorem for limits of composite functions.
  • Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such functions are called continuous . Other functions have points at which a break in the graph occurs, but satisfy this property over intervals contained in their domains. They are continuous on these intervals and are said to have a discontinuity at a point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point . Intuitively, a function is continuous at a particular point if there is no break in its graph at that point.

Continuity at a point

Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various functions that fail to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions that prevent such failures.

Our first function of interest is shown in [link] . We see that the graph of f ( x ) has a hole at a . In fact, f ( a ) is undefined. At the very least, for f ( x ) to be continuous at a , we need the following condition:

i. f ( a ) is defined.
A graph of an increasing linear function f(x) which crosses the x axis from quadrant three to quadrant two and which crosses the y axis from quadrant two to quadrant one. A point a greater than zero is marked on the x axis. The point on the function f(x) above a is an open circle; the function is not defined at a.
The function f ( x ) is not continuous at a because f ( a ) is undefined.

However, as we see in [link] , this condition alone is insufficient to guarantee continuity at the point a . Although f ( a ) is defined, the function has a gap at a . In this example, the gap exists because lim x a f ( x ) does not exist. We must add another condition for continuity at a —namely,

ii. lim x a f ( x ) exists.
The graph of a piecewise function f(x) with two parts. The first part is an increasing linear function that crosses from quadrant three to quadrant one at the origin. A point a greater than zero is marked on the x axis. At fa. on this segment, there is a solid circle. The other segment is also an increasing linear function. It exists in quadrant one for values of x greater than a. At x=a, this segment has an open circle.
The function f ( x ) is not continuous at a because lim x a f ( x ) does not exist.

However, as we see in [link] , these two conditions by themselves do not guarantee continuity at a point. The function in this figure satisfies both of our first two conditions, but is still not continuous at a . We must add a third condition to our list:

iii. lim x a f ( x ) = f ( a ) .
The graph of a piecewise function with two parts. The first part is an increasing linear function that crosses the x axis from quadrant three to quadrant two and which crosses the y axis from quadrant two to quadrant one. A point a greater than zero is marked on the x axis. At this point, there is an open circle on the linear function. The second part is a point at x=a above the line.
The function f ( x ) is not continuous at a because lim x a f ( x ) f ( a ) .

Now we put our list of conditions together and form a definition of continuity at a point.

Definition

A function f ( x ) is continuous at a point a if and only if the following three conditions are satisfied:

  1. f ( a ) is defined
  2. lim x a f ( x ) exists
  3. lim x a f ( x ) = f ( a )

A function is discontinuous at a point a if it fails to be continuous at a .

The following procedure can be used to analyze the continuity of a function at a point using this definition.

Problem-solving strategy: determining continuity at a point

  1. Check to see if f ( a ) is defined. If f ( a ) is undefined, we need go no further. The function is not continuous at a . If f ( a ) is defined, continue to step 2.
  2. Compute lim x a f ( x ) . In some cases, we may need to do this by first computing lim x a f ( x ) and lim x a + f ( x ) . If lim x a f ( x ) does not exist (that is, it is not a real number), then the function is not continuous at a and the problem is solved. If lim x a f ( x ) exists, then continue to step 3.
  3. Compare f ( a ) and lim x a f ( x ) . If lim x a f ( x ) f ( a ) , then the function is not continuous at a . If lim x a f ( x ) = f ( a ) , then the function is continuous at a .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask