<< Chapter < Page Chapter >> Page >

Pedagogical foundation and features

Biology is grounded on a solid scientific base and designed to help students understand the concepts at hand. Throughout the text, one can explore features that engage the students in scientific inquiry by taking selected topics a step further. Our features include:

  • Evolution Connection features uphold the importance of evolution to all biological study through discussions like “The Evolution of Metabolic Pathways” and “Algae and Evolutionary Paths to Photosynthesis.”
  • Scientific Method Connection call-outs walk students through actual or thought experiments that elucidate the steps of the scientific process as applied to the topic. Features include “Determining the Time Spent in Cell Cycle Stages” and “Testing the Hypothesis of Independent Assortment.”
  • Career Connection features present information on a variety of careers in the biological sciences, introducing students to the educational requirements and day-to-day work life of a variety of professions, such as microbiologist, ecologist, neurologist, and forensic scientist.
  • Everyday Connection features tie biological concepts to emerging issues and discuss science in terms of everyday life. Topics include “Chesapeake Bay” and “Can Snail Venom Be Used as a Pharmacological Pain Killer?”

Art and animations that engage

Our art program takes a straightforward approach designed to help students learn the concepts of biology through simple, effective illustrations, photos, and micrographs. Biology also incorporates links to relevant animations and interactive exercises that help bring biology to life for students.

  • Art Connection features call out core figures in each chapter for student study. Questions about key figures, including clicker questions that can be used in the classroom, engage students’ critical thinking and analytical abilities to ensure their genuine understanding.
  • Link to Learning features direct students to online interactive exercises and animations to add a fuller context and examples to core content.

About our team

Biology would not be possible if not for the tremendous contributions of the authors and community reviewing team.

Senior contributing authors

Yael Avissar Rhode Island College Cell Biology
Jung Choi Georgia Institute of Technology Genetics
Jean DeSaix University of North Carolina at Chapel Hill Evolution
Vladimir Jurukovski Suffolk County Community College Animal Physiology
Robert Wise University of Wisconsin, Oshkosh Plant Biology
Connie Rye east Mississippi Community College General Content Lead

Contributing authors and reviewers

Julie Adams Aurora University
Summer Allen Brown University
James Bader Case Western Reserve University
David Bailey St. Norbert College
Mark Belk Brigham Young University
Nancy Boury Iowa State University
Lisa Bonneau Metropolitan Community College - Blue River
Graciela Brelles-Marino California State University Pomona
Mark Browning Purdue University
Sue Chaplin University of St. Thomas
George Cline Jacksonville State University
Deb Cook Georgia Gwinnett College
Diane Day Clayton State University
Frank Dirrigl The University of Texas - Pan American
Waneene Dorsey Grambling State University
Nick Downey University of Wisconsin La Crosse
Rick Duhrkopf Baylor University
Kristy Duran Adams State University
Stan Eisen Christian Brothers University
Brent Ewers University of Wyoming
Myriam Feldman Lake Washington Institute of Technology
Michael Fine Virginia Commonwealth University
Linda Flora Delaware County Community College
Thomas Freeland Walsh University
David Grisé Texas A&M University - Corpus Christi
Andrea Hazard SUNY Cortland
Michael Hedrick University of North Texas
Linda Hensel Mercer University
Mark Kopeny University of Virginia
Norman Johnson University of Massachusetts - Amherst
Grace Lasker Lake Washington Institute of Technology; Walden University
Sandy Latourelle SUNY Plattsburgh
Theo Light Shippensburg University
Clark Lindgren Grinnell College
James Malcolm University of Redlands
Mark Meade Jacksonville State University
Richard Merritt Houston Community College
James Mickle North Carolina State University
Jasleen Mishra Houston Community College
Dudley Moon Albany College of Pharmacy and Health Sciences
Shobhana Natarajan Brookhaven College
Jonas Okeagu Fayetteville State University
Diana Oliveras University of Colorado Boulder
John Peters College of Charleston
Joel Piperberg Millersville University
Johanna Porter-Kelley Winston-Salem State university
Robyn Puffenbarger Bridgewater College
Dennis Revie California Lutheran University
Ann Rushing Baylor University
Sangha Saha City College of Chicago
Edward Saiff Ramapo College of New Jersey
Brian Shmaefsky Lone Star College System
Robert Sizemore Alcorn State University
Marc Smith Sinclair Community College
Frederick Spiegel University of Arkansas
Frederick Sproull La Roche College
Bob Sullivan Marist College
Mark Sutherland Hendrix College
Toure Thompson Alabama A&M University
Scott Thomson University of Wisconsin - Parkside
Allison van de Meene University of Melbourne
Mary White Southeastern Louisiana University
Steven Wilt Bellarmine University
James Wise Hampton University
Renna Wolfe
Virginia Young Mercer University
Leslie Zeman University of Washington
Daniel Zurek Pittsburg State University
Shobhana Natarajan Alcon Laboratories, Inc.

Learning resources

  • Wiley Plus for Biology-Fall 2013 Pilot
    WileyPLUS provides an engaging online environment for effective teaching and learning. WileyPLUS builds students’ confidence because it takes the guesswork out of studying by providing a clear roadmap; what to do, how to do it, and if they did it right. With WileyPLUS, students take more initiative. Therefore, the course has a greater impact on their learning experience. Adaptive tools provide students with a personal, adaptive learning experience so they can build their proficiency on topics and use their study time most effectively. Please let us know if you would like to participate in a Fall 2013 Pilot.
  • Biology Powerpoint Slides (faculty only)
    The PowerPoint slides are based on the extensive illustrations from Biology. They can be edited, incorporated into lecture notes, and you are free to share with anyone in the community. This is a restricted item requiring faculty registration. NOTE: This file is very large and may take some time to download.
  • SimBio (Laboratory)
    SimBio’s interactive modules (virtual labs and interactive tutorials and chapters) provide engaging, discovery-based learning tools that complement many of the chapters of Biology. SimBio is best known for their EcoBeaker® and EvoBeaker® suites of simulated ecology and evolution laboratories that guide students through the “discovery” of important concepts via a mix of structured and open-ended experimentation on simulated systems. In response to popular demand, SimBio has begun applying the same powerful approaches to topics in cell biology, genetics, and neurobiology. All of SimBio’s modules include instant-feedback questions that enhance student comprehension and auto-graded questions that facilitate implementation.

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask