<< Chapter < Page Chapter >> Page >

To learn more about atoms, isotopes, and how to tell one isotope from another, visit this site and run the simulation.

The periodic table

The different elements are organized and displayed in the periodic table    . Devised by Russian chemist Dmitri Mendeleev (1834–1907) in 1869, the table groups elements that, although unique, share certain chemical properties with other elements. The properties of elements are responsible for their physical state at room temperature: they may be gases, solids, or liquids. Elements also have specific chemical reactivity    , the ability to combine and to chemically bond with each other.

In the periodic table, shown in [link] , the elements are organized and displayed according to their atomic number and are arranged in a series of rows and columns based on shared chemical and physical properties. In addition to providing the atomic number for each element, the periodic table also displays the element’s atomic mass. Looking at carbon, for example, its symbol (C) and name appear, as well as its atomic number of six (in the upper left-hand corner) and its atomic mass of 12.11.

The periodic table consists of eighteen groups and seven periods. Two additional rows of elements, known as the lanthanides and actinides, are placed beneath the main table. The lanthanides include elements 57 through 71 and belong in period seven between groups three and four. The actinides include elements 89 through 98 and belong in period eight between the same groups. These elements are placed separately to make the table more compact. For each element, the name, atomic symbol, atomic number, and atomic mass are provided. The atomic number is a whole number that represents the number of protons. The atomic mass, which is the average mass of different isotopes, is estimated to two decimal places. For example, hydrogen has the atomic symbol H, the atomic number 1, and an atomic mass of 1.01. The atomic mass is always larger that the atomic number. For most small elements, the atomic mass is approximately double the atomic number as the number of protons and neutrons is about equal. The elements are divided into three categories: metals, nonmetals and metalloids. These form a diagonal line from period two, group thirteen to period seven, group sixteen. All elements to the left of the metalloids are metals, and all elements to the right are nonmetals.
The periodic table shows the atomic mass and atomic number of each element. The atomic number appears above the symbol for the element and the approximate atomic mass appears below it.

The periodic table groups elements according to chemical properties. The differences in chemical reactivity between the elements are based on the number and spatial distribution of an atom’s electrons. Atoms that chemically react and bond to each other form molecules. Molecules are simply two or more atoms chemically bonded together. Logically, when two atoms chemically bond to form a molecule, their electrons, which form the outermost region of each atom, come together first as the atoms form a chemical bond.

Electron shells and the bohr model

It should be stressed that there is a connection between the number of protons in an element, the atomic number that distinguishes one element from another, and the number of electrons it has. In all electrically neutral atoms, the number of electrons is the same as the number of protons. Thus, each element, at least when electrically neutral, has a characteristic number of electrons equal to its atomic number.

An early model of the atom was developed in 1913 by Danish scientist Niels Bohr (1885–1962). The Bohr model shows the atom as a central nucleus containing protons and neutrons, with the electrons in circular orbitals at specific distances from the nucleus, as illustrated in [link] . These orbits form electron shells or energy levels, which are a way of visualizing the number of electrons in the outermost shells. These energy levels are designated by a number and the symbol “n.” For example, 1n represents the first energy level located closest to the nucleus.

Three concentric circles around the nucleus of a hydrogen atom represent principal shells. These are named 1n, 2n, and 3n in order of increasing distance from the nucleus. An electron orbits in the shell closest to the nucleus, 1n.
The Bohr model was developed by Niels Bohrs in 1913. In this model, electrons exist within principal shells. An electron normally exists in the lowest energy shell available, which is the one closest to the nucleus. Energy from a photon of light can bump it up to a higher energy shell, but this situation is unstable, and the electron quickly decays back to the ground state. In the process, a photon of light is released.

Questions & Answers

what is biology
Dada Reply
The scientific study of life.
the virus that causes mumps in humans is composed of a protein outer Shell containing a core of DNA
Daniel Reply
Basic science and applied science question about cancer
Joyce Reply
what are the importance of ATPs
Olatunji Reply
How can biology be studied from a microscopic approach to a global approach
Joyce Reply
The large central opening in the poriferan body is called
Chynna Reply
You go for a long walk on a hot day. Give an example of a way in which homeostasis keeps your body healthy.
Joyce Reply
You sweat.
sweating is your bodies way of keeping you from overheating.
Thank you
what is biology
Neya Reply
biology is the study of life
Biology is the study of Life
is the branch of science which deals with the of living things.
what is metabolism
Sangam Reply
hi palz, what's the ?
Gbolajobi Reply
hi plz, what's the.
pls come a again
Describe the steps and results of reintroducing wolves to Yellowstone National Park.
Natalia Reply
tag and release wolves into Yellowstone. wolves eventually reproduce and the pack grows. as wolves hunt they cull the sick and weak prey. the carcass that is left provides food for other species (scavengers and insect.. etc). this heals the circle of life and contributes to the biodiversity...
before you know it species that are critical to the eco system return. having apex predators is crucial to an ecosystem... it helps run the deer and elk , etc around.
example: there was a species of shrub/ plant that grows along river banks that moose love to eat.. the moose have no predator so they decimate that food source which also helps prevent erosion. when the wolves were reintroduced this changed. oddly enough this plant species started to repopulate in
the areas where wolf feces sat and decayed
which of the following statements about the parts of an egg are false?
Israel Reply
Monotremes include...?
medicinal plants including microbs
vijay Reply
,medicinal plants including microbes
what is biology
Siyanbola Reply
study of living organisms...
study of plants and animals
what is abiotic and biotic factors?
Hira Reply

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?