<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Recognize the relationship between the solutions of an equation and its graph.
  • Graph a linear equation by plotting points.
  • Graph vertical and horizontal lines.

Before you get started, take this readiness quiz.

  1. Evaluate 3 x + 2 when x = −1 .
    If you missed this problem, review [link] .
  2. Solve 3 x + 2 y = 12 for y in general.
    If you missed this problem, review [link] .

Recognize the relationship between the solutions of an equation and its graph

In the previous section, we found several solutions to the equation 3 x + 2 y = 6 . They are listed in [link] . So, the ordered pairs ( 0 , 3 ) , ( 2 , 0 ) , and ( 1 , 3 2 ) are some solutions to the equation 3 x + 2 y = 6 . We can plot these solutions in the rectangular coordinate system as shown in [link] .

3 x + 2 y = 6
x y ( x , y )
0 3 ( 0 , 3 )
2 0 ( 2 , 0 )
1 3 2 ( 1 , 3 2 )
The figure shows four points on the x y-coordinate plane. The x-axis of the plane runs from negative 7 to 7. The y-axis of the plane runs from negative 7 to 7. Dots mark off the four points at (0, 3), (1, three halves), (2, 0), and (4, negative 3). The four points appear to line up along a straight line.

Notice how the points line up perfectly? We connect the points with a line to get the graph of the equation 3 x + 2 y = 6 . See [link] . Notice the arrows on the ends of each side of the line. These arrows indicate the line continues.

The figure shows a straight line drawn through four points on the x y-coordinate plane. The x-axis of the plane runs from negative 7 to 7. The y-axis of the plane runs from negative 7 to 7. Dots mark off the four points at (0, 3), (1, three halves), (2, 0), and (4, negative 3). A straight line with a negative slope goes through all four points. The line has arrows on both ends pointing to the edge of the figure. The line is labeled with the equation 3x plus 2y equals 6.

Every point on the line is a solution of the equation. Also, every solution of this equation is a point on this line. Points not on the line are not solutions.

Notice that the point whose coordinates are ( −2 , 6 ) is on the line shown in [link] . If you substitute x = −2 and y = 6 into the equation, you find that it is a solution to the equation.

The figure shows a straight line and two points and on the x y-coordinate plane. The x-axis of the plane runs from negative 7 to 7. The y-axis of the plane runs from negative 7 to 7. Dots mark off the two points and are labeled by the coordinates “(negative 2, 6)” and “(4, 1)”. The straight line goes through the point (negative 2, 6) but does not go through the point (4, 1).
The figure shows a series of equations to check if the ordered pair (negative 2, 6) is a solution to the equation 3x plus 2y equals 6. The first line states “Test (negative 2, 6)”. The negative 2 is colored blue and the 6 is colored red. The second line states the two- variable equation 3x plus 2y equals 6. The third line shows the ordered pair substituted into the two- variable equation resulting in 3(negative 2) plus 2(6) equals 6 where the negative 2 is colored blue to show it is the first component in the ordered pair and the 6 is red to show it is the second component in the ordered pair. The fourth line is the simplified equation negative 6 plus 12 equals 6. The fifth line is the further simplified equation 6equals6. A check mark is written next to the last equation to indicate it is a true statement and show that (negative 2, 6) is a solution to the equation 3x plus 2y equals 6.

So the point ( −2 , 6 ) is a solution to the equation 3 x + 2 y = 6 . (The phrase “the point whose coordinates are ( −2 , 6 ) ” is often shortened to “the point ( −2 , 6 ) .”)

The figure shows a series of equations to check if the ordered pair (4, 1) is a solution to the equation 3x plus 2y equals 6. The first line states “What about (4, 1)?”. The 4 is colored blue and the 1 is colored red. The second line states the two- variable equation 3x plus 2y equals 6. The third line shows the ordered pair substituted into the two- variable equation resulting in 3(4) plus 2(1) equals 6 where the 4 is colored blue to show it is the first component in the ordered pair and the 1 is red to show it is the second component in the ordered pair. The fourth line is the simplified equation 12 plus 2 equals 6. A question mark is placed above the equals sign to indicate that it is not known if the equation is true or false. The fifth line is the further simplified statement 14 not equal to 6. A “not equals” sign is written between the two numbers and looks like an equals sign with a forward slash through it.

So ( 4 , 1 ) is not a solution to the equation 3 x + 2 y = 6 . Therefore, the point ( 4 , 1 ) is not on the line. See [link] . This is an example of the saying, “A picture is worth a thousand words.” The line shows you all the solutions to the equation. Every point on the line is a solution of the equation. And, every solution of this equation is on this line. This line is called the graph of the equation 3 x + 2 y = 6 .

Graph of a linear equation

The graph of a linear equation     A x + B y = C is a line.

  • Every point on the line is a solution of the equation.
  • Every solution of this equation is a point on this line.

The graph of y = 2 x 3 is shown.

The figure shows a straight line on the x y-coordinate plane. The x-axis of the plane runs from negative 7 to 7. The y-axis of the plane runs from negative 7 to 7. The straight line has a positive slope and goes through the y-axis at the (0, negative 3). The line is labeled with the equation y equals 2x negative 3.

For each ordered pair, decide:

Is the ordered pair a solution to the equation?
Is the point on the line?

A ( 0 , −3 )  B ( 3 , 3 )  C ( 2 , −3 )  D ( −1 , −5 )

Solution

Substitute the x - and y - values into the equation to check if the ordered pair is a solution to the equation.


  1. The figure shows a series of equations to check if the ordered pairs (0, negative 3), (3, 3), (2, negative 3), and (negative 1, negative 5) are a solutions to the equation y equals 2x negative 3. The first line states the ordered pairs with the labels A: (0, negative 3), B: (3, 3), C: (2, negative 3), and D: (negative 1, negative 5). The first components are colored blue and the second components are colored red. The second line states the two- variable equation y equals 2x minus 3. The third line shows the four ordered pairs substituted into the two- variable equation resulting in four equations. The first equation is negative 3 equals 2(0) minus 3 where the 0 is colored clue and the negative 3 on the left side of the equation is colored red. The second equation is 3 equals 2(3) minus 3 where the 3 in parentheses is colored clue and the 3 on the left side of the equation is colored red. The third equation is negative 3 equals 2(2) minus 3 where the 2 in parentheses is colored clue and the negative 3 on the left side of the equation is colored red. The fourth equation is negative 5 equals 2(negative 1) minus 3 where the negative 1 is colored clue and the negative 5 is colored red. Question marks are placed above all the equal signs to indicate that it is not known if the equations are true or false. The fourth line shows the simplified versions of the four equations. The first is negative 3 equals negative 3 with a check mark indicating (0, negative 3) is a solution. The second is 3 equals 3 with a check mark indicating (3, 3) is a solution. The third is negative 3 not equals 1 indicating (2, negative 3) is not a solution. The fourth is negative 5 equals negative 5 with a check mark indicating (negative 1, negative 5) is a solution.

  2. Plot the points A ( 0 , 3 ) , B ( 3 , 3 ) , C ( 2 , −3 ) , and D ( −1 , −5 ) .
    The figure shows a straight line and four points and on the x y-coordinate plane. The x-axis of the plane runs from negative 7 to 7. The y-axis of the plane runs from negative 7 to 7. Dots mark off the two points and are labeled by the coordinates (negative 1, negative 5), (0, negative 3), (2, negative 3), and (3, 3). The straight line, labeled with the equation y equals 2x negative 3 goes through the three points (negative 1, negative 5), (0, negative 3), and (3, 3) but does not go through the point (2, negative 3).

The points ( 0 , 3 ) , ( 3 , 3 ) , and ( −1 , −5 ) are on the line y = 2 x 3 , and the point ( 2 , −3 ) is not on the line.

The points that are solutions to y = 2 x 3 are on the line, but the point that is not a solution is not on the line.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the graph of y = 3 x 1 to decide whether each ordered pair is:

  • a solution to the equation.
  • on the line.

( 0 , −1 ) ( 2 , 5 )

The figure shows a straight line on the x y-coordinate plane. The x-axis of the plane runs from negative 7 to 7. The y-axis of the plane runs from negative 7 to 7. The straight line goes through the point (negative 2, negative 7) and for every 3 units it goes up, it goes one unit to the right. The line is labeled with the equation y equals 3x minus 1.

yes, yes  yes, yes

Got questions? Get instant answers now!

Use graph of y = 3 x 1 to decide whether each ordered pair is:

  • a solution to the equation
  • on the line

( 3 , −1 ) ( −1 , −4 )

The figure shows a straight line on the x y-coordinate plane. The x-axis of the plane runs from negative 7 to 7. The y-axis of the plane runs from negative 7 to 7. The straight line goes through the point (negative 2, negative 7) and for every 3 units it goes up, it goes one unit to the right. The line is labeled with the equation y equals 3x minus 1.

no, no  yes, yes

Got questions? Get instant answers now!

Graph a linear equation by plotting points

There are several methods that can be used to graph a linear equation. The method we used to graph 3 x + 2 y = 6 is called plotting points, or the Point–Plotting Method.

Questions & Answers

4x+7y=29,x+3y=11 substitute method of linear equation
Srinu Reply
substitute method of linear equation
Srinu
Solve one equation for one variable. Using the 2nd equation, x=11-3y. Substitute that for x in first equation. this will find y. then use the value for y to find the value for x.
bruce
I want to learn
Elizebeth
help
Elizebeth
I want to learn. Please teach me?
Wayne
1) Use any equation, and solve for any of the variables. Since the coefficient of x (the number in front of the x) in the second equation is 1 (it actually isn't shown, but 1 * x = x), use that equation. Subtract 3y from both sides (this isolates the x on the left side of the equal sign).
bruce
2) This results in x=11-3y. x is note in terms of y. Use that as the value of x and substitute for all x in the first equation. The first equation becomes 4(11-3y)+7y =29. Note that the only variable left in the first equation is the y. If you have multiple variable, then something is wrong.
bruce
3) Distribute (multiply) the 4 across 11-3y to get 44-12y. Add this to the 7y. So, the equation is now 44-5y=29.
bruce
4) Solve 44-5y=29 for y. Isolate the y by subtracting 44 from birth sides, resulting in -5y=-15. Now, divide birth sides by -5 (since you have -5y). This results in y=3. You now have the value of one variable.
bruce
5) The last step is to take the value of y from Step 4) and substitute into the 2nd equation. Therefore: x+3y=11 becomes x+3(3)=11. Then multiplying, x+9=11. Finally, solve for x by subtracting 9 from both sides. Therefore, x=2.
bruce
6) The ordered pair of (2, 3) is the proposed solution. To check, substitute those values into either equation. If the result is true, then the solution is correct. 4(2)+7(3)=8+21=29. TRUE! Finished.
bruce
At 1:30 Marlon left his house to go to the beach, a distance of 5.625 miles. He rose his skateboard until 2:15, and then walked the rest of the way. He arrived at the beach at 3:00. Marlon's speed on his skateboard is 1.5 times his walking speed. Find his speed when skateboarding and when walking.
Andrew Reply
divide 3x⁴-4x³-3x-1 by x-3
Ritik Reply
how to multiply the monomial
Ceny Reply
Two sisters like to compete on their bike rides. Tamara can go 4 mph faster than her sister, Samantha. If it takes Samantha 1 hours longer than Tamara to go 80 miles, how fast can Samantha ride her bike? Got questions? Get instant answers now!
Seera Reply
how do u solve that question
Seera
Two sisters like to compete on their bike rides. Tamara can go 4 mph faster than her sister, Samantha. If it takes Samantha 1 hours longer than Tamara to go 80 miles, how fast can Samantha ride her bike?
Seera
Speed=distance ÷ time
Tremayne
x-3y =1; 3x-2y+4=0 graph
Juned Reply
Brandon has a cup of quarters and dimes with a total of 5.55$. The number of quarters is five less than three times the number of dimes
ashley Reply
app is wrong how can 350 be divisible by 3.
Raheem Reply
June needs 48 gallons of punch for a party and has two different coolers to carry it in. The bigger cooler is five times as large as the smaller cooler. How many gallons can each cooler hold?
Susanna Reply
Susanna if the first cooler holds five times the gallons then the other cooler. The big cooler holda 40 gallons and the 2nd will hold 8 gallons is that correct?
Georgie
@Susanna that person is correct if you divide 40 by 8 you can see it's 5 it's simple
Ashley
@Geogie my bad that was meant for u
Ashley
Hi everyone, I'm glad to be connected with you all. from France.
Lorris Reply
I'm getting "math processing error" on math problems. Anyone know why?
Ray Reply
Can you all help me I don't get any of this
Jade Reply
4^×=9
Alberto Reply
Did anyone else have trouble getting in quiz link for linear inequalities?
Sireka Reply
operation of trinomial
Justin Reply
Practice Key Terms 3

Get the best Elementary algebra course in your pocket!





Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask