<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Solve uniform motion applications

Before you get started, take this readiness quiz.

  1. Find the distance travelled by a car going 70 miles per hour for 3 hours.
    If you missed this problem, review [link] .
  2. Solve x + 1.2 ( x 10 ) = 98 .
    If you missed this problem, review [link] .
  3. Convert 90 minutes to hours.
    If you missed this problem, review [link] .

Solve uniform motion applications

When planning a road trip, it often helps to know how long it will take to reach the destination or how far to travel each day. We would use the distance, rate, and time formula, D = r t , which we have already seen.

In this section, we will use this formula in situations that require a little more algebra to solve than the ones we saw earlier. Generally, we will be looking at comparing two scenarios, such as two vehicles travelling at different rates or in opposite directions. When the speed of each vehicle is constant, we call applications like this uniform motion problems .

Our problem-solving strategies will still apply here, but we will add to the first step. The first step will include drawing a diagram that shows what is happening in the example. Drawing the diagram helps us understand what is happening so that we will write an appropriate equation. Then we will make a table to organize the information, like we did for the money applications.

The steps are listed here for easy reference:

Use a problem-solving strategy in distance, rate, and time applications.

  1. Read the problem. Make sure all the words and ideas are understood.
    • Draw a diagram to illustrate what it happening.
    • Create a table to organize the information.
    • Label the columns rate, time, distance.
    • List the two scenarios.
    • Write in the information you know.
    A table with three rows and four columns and an extra cell at the bottom of the fourth column. The first row is a header row and reads from left to right _____, Rate, Time, and Distance. The rest of the cells are blank.
  2. Identify what we are looking for.
  3. Name what we are looking for. Choose a variable to represent that quantity.
    • Complete the chart.
    • Use variable expressions to represent that quantity in each row.
    • Multiply the rate times the time to get the distance.
  4. Translate into an equation.
    • Restate the problem in one sentence with all the important information.
    • Then, translate the sentence into an equation.
  5. Solve the equation using good algebra techniques.
  6. Check the answer in the problem and make sure it makes sense.
  7. Answer the question with a complete sentence.

An express train and a local train leave Pittsburgh to travel to Washington, D.C. The express train can make the trip in 4 hours and the local train takes 5 hours for the trip. The speed of the express train is 12 miles per hour faster than the speed of the local train. Find the speed of both trains.

Solution

Step 1. Read the problem. Make sure all the words and ideas are understood.

  • Draw a diagram to illustrate what it happening. Shown below is a sketch of what is happening in the example.

    Pittsburgh and Washington, DC, are represented by two separate lines. There is a line marked Express Train from Pittsburgh to Washington that is 12 mph faster and 4 hours long. There is a line marked Local Train from Pittsburgh to Washington that take 5 hours. The space between Pittsburgh and Washington is marked distance.
    A table with three rows and four columns. The first row is a header row and reads from left to right _____, Rate (mph), Time (hrs), and Distance (miles). Below the blank header cell, we have Express and then Local. Below the Time header cell, we have 4 and then 5. The rest of the cells are blank.
  • Create a table to organize the information.
  • Label the columns “Rate,” “Time,” and “Distance.”
  • List the two scenarios.
  • Write in the information you know.

Step 2. Identify what we are looking for.

  • We are asked to find the speed of both trains.
  • Notice that the distance formula uses the word “rate,” but it is more common to use “speed” when we talk about vehicles in everyday English.

Step 3. Name what we are looking for. Choose a variable to represent that quantity.

  • Complete the chart
  • Use variable expressions to represent that quantity in each row.
  • We are looking for the speed of the trains. Let’s let r represent the speed of the local train. Since the speed of the express train is 12 mph faster, we represent that as r + 12 .

r = speed of the local train r + 12 = speed of the express train

Fill in the speeds into the chart.

A table with three rows and four columns. The first row is a header row and reads from left to right _____, Rate (mph), Time (hrs), and Distance (miles). Below the blank header cell, we have Express and then Local. Below the Rate header cell, we have r plus 12 and then r. Below the Time header cell, we have 4 and then 5. The rest of the cells are blank.

Multiply the rate times the time to get the distance.

A table with three rows and four columns. The first row is a header row and reads from left to right _____, Rate (mph), Time (hrs), and Distance (miles). Below the blank header cell, we have Express and then Local. Below the Rate header cell, we have r plus 12 and then r. Below the Time header cell, we have 4 and then 5. Below the Distance header cell, we have 4 times the quantity (r plus 12) and then 5r.

Step 4. Translate into an equation.

  • Restate the problem in one sentence with all the important information.
  • Then, translate the sentence into an equation.
  • The equation to model this situation will come from the relation between the distances. Look at the diagram we drew above. How is the distance travelled by the express train related to the distance travelled by the local train?
  • Since both trains leave from Pittsburgh and travel to Washington, D.C. they travel the same distance. So we write:


The sentence, “The distance traveled by the express train equals the distance traveled by the local train,” can be translated to an equation. Translate “distance traveled by the express train” to 4 times the quantity r plus 12, and translate “distance traveled by the local train” to 5r. The full equation is 4 times the quantity r plus 12 equals 5r.

Step 5. Solve the equation using good algebra techniques.

Now solve this equation. .
.
.
So the speed of the local train is 48 mph.
Find the speed of the express train. .
.
.
The speed of the express train is 60 mph.

Step 6. Check the answer in the problem and make sure it makes sense.

express train 60 mph (4 hours) = 240 miles local train 48 mph (5 hours) = 240 miles ✓

Step 7. Answer the question with a complete sentence.

  • The speed of the local train is 48 mph and the speed of the express train is 60 mph.
Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask