<< Chapter < Page Chapter >> Page >

Using the order of operations

Use the order of operations to evaluate each of the following expressions.

  1. ( 3 2 ) 2 4 ( 6 + 2 )
  2. 5 2 4 7 11 2
  3. 6 | 5 8 | + 3 ( 4 1 )
  4. 14 3 2 2 5 3 2
  5. 7 ( 5 3 ) 2 [ ( 6 3 ) 4 2 ] + 1

  1. ( 3 2 ) 2 4 ( 6 + 2 ) = ( 6 ) 2 4 ( 8 ) Simplify parentheses = 36 4 ( 8 ) Simplify exponent = 36 32 Simplify multiplication = 4 Simplify subtraction

  2. 5 2 4 7 11 2 = 5 2 4 7 9 Simplify grouping symbols (radical) = 5 2 4 7 3 Simplify radical = 25 4 7 3 Simplify exponent = 21 7 3 Simplify subtraction in numerator = 3 3 Simplify division = 0 Simplify subtraction

    Note that in the first step, the radical is treated as a grouping symbol, like parentheses. Also, in the third step, the fraction bar is considered a grouping symbol so the numerator is considered to be grouped.


  3. 6 | 5 8 | + 3 ( 4 1 ) = 6 | −3 | + 3 ( 3 ) Simplify inside grouping symbols = 6 3 + 3 ( 3 ) Simplify absolute value = 6 3 + 9 Simplify multiplication = 3 + 9 Simplify subtraction = 12 Simplify addition

  4. 14 3 2 2 5 3 2 = 14 3 2 2 5 9 Simplify exponent = 14 6 10 9 Simplify products = 8 1 Simplify differences = 8 Simplify quotient

    In this example, the fraction bar separates the numerator and denominator, which we simplify separately until the last step.


  5. 7 ( 5 3 ) 2 [ ( 6 3 ) 4 2 ] + 1 = 7 ( 15 ) 2 [ ( 3 ) 4 2 ] + 1 Simplify inside parentheses = 7 ( 15 ) 2 ( 3 16 ) + 1 Simplify exponent = 7 ( 15 ) 2 ( −13 ) + 1 Subtract = 105 + 26 + 1 Multiply = 132 Add
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the order of operations to evaluate each of the following expressions.

  1. 5 2 4 2 + 7 ( 5 4 ) 2
  2. 1 + 7 5 8 4 9 6
  3. | 1.8 4.3 | + 0.4 15 + 10
  4. 1 2 [ 5 3 2 7 2 ] + 1 3 9 2
  5. [ ( 3 8 ) 2 4 ] ( 3 8 )
  1. 10
  2. 2
  3. 4.5
  4. 25
  5. 26
Got questions? Get instant answers now!

Using properties of real numbers

For some activities we perform, the order of certain operations does not matter, but the order of other operations does. For example, it does not make a difference if we put on the right shoe before the left or vice-versa. However, it does matter whether we put on shoes or socks first. The same thing is true for operations in mathematics.

Commutative properties

The commutative property of addition    states that numbers may be added in any order without affecting the sum.

a + b = b + a

We can better see this relationship when using real numbers.

( −2 ) + 7 = 5 and 7 + ( −2 ) = 5

Similarly, the commutative property of multiplication    states that numbers may be multiplied in any order without affecting the product.

a b = b a

Again, consider an example with real numbers.

( −11 ) ( −4 ) = 44 and ( −4 ) ( −11 ) = 44

It is important to note that neither subtraction nor division is commutative. For example, 17 5 is not the same as 5 17. Similarly, 20 ÷ 5 5 ÷ 20.

Associative properties

The associative property of multiplication    tells us that it does not matter how we group numbers when multiplying. We can move the grouping symbols to make the calculation easier, and the product remains the same.

a ( b c ) = ( a b ) c

Consider this example.

( 3 4 ) 5 = 60 and 3 ( 4 5 ) = 60

The associative property of addition    tells us that numbers may be grouped differently without affecting the sum.

a + ( b + c ) = ( a + b ) + c

This property can be especially helpful when dealing with negative integers. Consider this example.

[ 15 + ( −9 ) ] + 23 = 29 and 15 + [ ( −9 ) + 23 ] = 29

Are subtraction and division associative? Review these examples.

8 ( 3 15 ) = ? ( 8 3 ) 15 64 ÷ ( 8 ÷ 4 ) = ? ( 64 ÷ 8 ) ÷ 4 8 ( 12 ) = 5 15   64 ÷ 2 = ?   8 ÷ 4 20   20 10   32 2

Questions & Answers

Find that number sum and product of all the divisors of 360
jancy Reply
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
Payal Reply
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
madras university algebra questions papers first year B. SC. maths
Kanniyappan Reply
Hey
Rightspect
hi
chesky
Give me algebra questions
Rightspect
how to send you
Vandna
What does this mean
Michael Reply
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
rajan Reply
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
is there any case that you can have a polynomials with a degree of four?
victor
***sscc.edu/home/jdavidso/math/catalog/polynomials/fourth/fourth.html
Oliver
can you solve it step b step
Ching Reply
give me some important question in tregnamentry
Anshuman

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask