<< Chapter < Page Chapter >> Page >

Verifying an identity using algebra and even/odd identities

Verify the identity:

sin 2 ( θ ) cos 2 ( θ ) sin ( θ ) cos ( θ ) = cos θ sin θ

Let’s start with the left side and simplify:

sin 2 ( θ ) cos 2 ( θ ) sin ( θ ) cos ( θ ) = [ sin ( θ ) ] 2 [ cos ( θ ) ] 2 sin ( θ ) cos ( θ ) = ( sin θ ) 2 ( cos θ ) 2 sin θ cos θ sin ( x ) = sin x and cos ( x ) = cos x = ( sin θ ) 2 ( cos θ ) 2 sin θ cos θ Difference of squares = ( sin θ cos θ ) ( sin θ + cos θ ) ( sin θ + cos θ ) = ( sin θ cos θ ) ( sin θ + cos θ ) ( sin θ + cos θ ) = cos θ sin θ
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Verify the identity sin 2 θ 1 tan θ sin θ tan θ = sin θ + 1 tan θ .

sin 2 θ 1 tan θ sin θ tan θ = ( sin θ + 1 ) ( sin θ 1 ) tan θ ( sin θ 1 ) = sin θ + 1 tan θ

Got questions? Get instant answers now!

Verifying an identity involving cosines and cotangents

Verify the identity: ( 1 cos 2 x ) ( 1 + cot 2 x ) = 1.

We will work on the left side of the equation.

( 1 cos 2 x ) ( 1 + cot 2 x ) = ( 1 cos 2 x ) ( 1 + cos 2 x sin 2 x ) = ( 1 cos 2 x ) ( sin 2 x sin 2 x + cos 2 x sin 2 x ) Find the common denominator . = ( 1 cos 2 x ) ( sin 2 x + cos 2 x sin 2 x ) = ( sin 2 x ) ( 1 sin 2 x ) = 1
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using algebra to simplify trigonometric expressions

We have seen that algebra is very important in verifying trigonometric identities, but it is just as critical in simplifying trigonometric expressions before solving. Being familiar with the basic properties and formulas of algebra, such as the difference of squares formula, the perfect square formula, or substitution, will simplify the work involved with trigonometric expressions and equations.

For example, the equation ( sin x + 1 ) ( sin x 1 ) = 0 resembles the equation ( x + 1 ) ( x 1 ) = 0 , which uses the factored form of the difference of squares. Using algebra makes finding a solution straightforward and familiar. We can set each factor equal to zero and solve. This is one example of recognizing algebraic patterns in trigonometric expressions or equations.

Another example is the difference of squares formula, a 2 b 2 = ( a b ) ( a + b ) , which is widely used in many areas other than mathematics, such as engineering, architecture, and physics. We can also create our own identities by continually expanding an expression and making the appropriate substitutions. Using algebraic properties and formulas makes many trigonometric equations easier to understand and solve.

Writing the trigonometric expression as an algebraic expression

Write the following trigonometric expression as an algebraic expression: 2 cos 2 θ + cos θ 1.

Notice that the pattern displayed has the same form as a standard quadratic expression, a x 2 + b x + c . Letting cos θ = x , we can rewrite the expression as follows:

2 x 2 + x 1

This expression can be factored as ( 2 x + 1 ) ( x 1 ) . If it were set equal to zero and we wanted to solve the equation, we would use the zero factor property and solve each factor for x . At this point, we would replace x with cos θ and solve for θ .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Rewriting a trigonometric expression using the difference of squares

Rewrite the trigonometric expression using the difference of squares: 4 cos 2 θ 1.

Notice that both the coefficient and the trigonometric expression in the first term are squared, and the square of the number 1 is 1. This is the difference of squares.

4 cos 2 θ 1 = ( 2 cos θ ) 2 1 = ( 2 cos θ 1 ) ( 2 cos θ + 1 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Rewrite the trigonometric expression using the difference of squares: 25 9 sin 2 θ .

This is a difference of squares formula: 25 9 sin 2 θ = ( 5 3 sin θ ) ( 5 + 3 sin θ ) .

Got questions? Get instant answers now!

Questions & Answers

In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask