<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Apply the Binomial Theorem.

A polynomial with two terms is called a binomial. We have already learned to multiply binomials and to raise binomials to powers, but raising a binomial to a high power can be tedious and time-consuming. In this section, we will discuss a shortcut that will allow us to find ( x + y ) n without multiplying the binomial by itself n times.

Identifying binomial coefficients

In Counting Principles , we studied combinations . In the shortcut to finding ( x + y ) n , we will need to use combinations to find the coefficients that will appear in the expansion of the binomial. In this case, we use the notation ( n r ) instead of C ( n , r ) , but it can be calculated in the same way. So

( n r ) = C ( n , r ) = n ! r ! ( n r ) !

The combination ( n r ) is called a binomial coefficient . An example of a binomial coefficient is ( 5 2 ) = C ( 5 , 2 ) = 10.

Binomial coefficients

If n and r are integers greater than or equal to 0 with n r , then the binomial coefficient    is

( n r ) = C ( n , r ) = n ! r ! ( n r ) !

Is a binomial coefficient always a whole number?

Yes. Just as the number of combinations must always be a whole number, a binomial coefficient will always be a whole number.

Finding binomial coefficients

Find each binomial coefficient.

  1. ( 5 3 )
  2. ( 9 2 )
  3. ( 9 7 )

Use the formula to calculate each binomial coefficient. You can also use the n C r function on your calculator.

( n r ) = C ( n , r ) = n ! r ! ( n r ) !
  1. ( 5 3 ) = 5 ! 3 ! ( 5 3 ) ! = 5 4 3 ! 3 ! 2 ! = 10
  2. ( 9 2 ) = 9 ! 2 ! ( 9 2 ) ! = 9 8 7 ! 2 ! 7 ! = 36
  3. ( 9 7 ) = 9 ! 7 ! ( 9 7 ) ! = 9 8 7 ! 7 ! 2 ! = 36
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find each binomial coefficient.

  1. ( 7 3 )
  2. ( 11 4 )

  1. 35
  2. 330

Got questions? Get instant answers now!

Using the binomial theorem

When we expand ( x + y ) n by multiplying, the result is called a binomial expansion    , and it includes binomial coefficients. If we wanted to expand ( x + y ) 52 , we might multiply ( x + y ) by itself fifty-two times. This could take hours! If we examine some simple binomial expansions, we can find patterns that will lead us to a shortcut for finding more complicated binomial expansions.

( x + y ) 2 = x 2 + 2 x y + y 2 ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4

First, let’s examine the exponents. With each successive term, the exponent for x decreases and the exponent for y increases. The sum of the two exponents is n for each term.

Next, let’s examine the coefficients. Notice that the coefficients increase and then decrease in a symmetrical pattern. The coefficients follow a pattern:

( n 0 ) , ( n 1 ) , ( n 2 ) , ... , ( n n ) .

These patterns lead us to the Binomial Theorem , which can be used to expand any binomial.

( x + y ) n = k = 0 n ( n k ) x n k y k = x n + ( n 1 ) x n 1 y + ( n 2 ) x n 2 y 2 + ... + ( n n 1 ) x y n 1 + y n

Another way to see the coefficients is to examine the expansion of a binomial in general form, x + y , to successive powers 1, 2, 3, and 4.

( x + y ) 1 = x + y ( x + y ) 2 = x 2 + 2 x y + y 2 ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4

Can you guess the next expansion for the binomial ( x + y ) 5 ?

Graph of the function f_2.

See [link] , which illustrates the following:

  • There are n + 1 terms in the expansion of ( x + y ) n .
  • The degree (or sum of the exponents) for each term is n .
  • The powers on x begin with n and decrease to 0.
  • The powers on y begin with 0 and increase to n .
  • The coefficients are symmetric.

To determine the expansion on ( x + y ) 5 , we see n = 5 , thus, there will be 5+1 = 6 terms. Each term has a combined degree of 5. In descending order for powers of x , the pattern is as follows:

Questions & Answers

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
Payal Reply
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
Please you teach
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask