<< Chapter < Page Chapter >> Page >
A graph of y=tangent of x. Asymptotes at -pi over 2 and pi over 2.
Graph of the tangent function

Graphing variations of y = tan x

As with the sine and cosine functions, the tangent    function can be described by a general equation.

y = A tan ( B x )

We can identify horizontal and vertical stretches and compressions using values of A and B . The horizontal stretch can typically be determined from the period of the graph. With tangent graphs, it is often necessary to determine a vertical stretch using a point on the graph.

Because there are no maximum or minimum values of a tangent function, the term amplitude cannot be interpreted as it is for the sine and cosine functions. Instead, we will use the phrase stretching/compressing factor when referring to the constant A .

Features of the graph of y = A Tan( Bx )

  • The stretching factor is | A | .
  • The period is P = π | B | .
  • The domain is all real numbers x , where x π 2 | B | + π | B | k such that k is an integer.
  • The range is ( −∞ , ) .
  • The asymptotes occur at x = π 2 | B | + π | B | k , where k is an integer.
  • y = A tan ( B x ) is an odd function.

Graphing one period of a stretched or compressed tangent function

We can use what we know about the properties of the tangent function to quickly sketch a graph of any stretched and/or compressed tangent function of the form f ( x ) = A tan ( B x ) . We focus on a single period    of the function including the origin, because the periodic property enables us to extend the graph to the rest of the function’s domain if we wish. Our limited domain is then the interval ( P 2 , P 2 ) and the graph has vertical asymptotes at ± P 2 where P = π B . On ( π 2 , π 2 ) , the graph will come up from the left asymptote at x = π 2 , cross through the origin, and continue to increase as it approaches the right asymptote at x = π 2 . To make the function approach the asymptotes at the correct rate, we also need to set the vertical scale by actually evaluating the function for at least one point that the graph will pass through. For example, we can use

f ( P 4 ) = A tan ( B P 4 ) = A tan ( B π 4 B ) = A

because tan ( π 4 ) = 1.

Given the function f ( x ) = A tan ( B x ) , graph one period.

  1. Identify the stretching factor, | A | .
  2. Identify B and determine the period, P = π | B | .
  3. Draw vertical asymptotes at x = P 2 and x = P 2 .
  4. For A > 0 , the graph approaches the left asymptote at negative output values and the right asymptote at positive output values (reverse for A < 0 ).
  5. Plot reference points at ( P 4 , A ) , ( 0 , 0 ) , and ( P 4 ,− A ) , and draw the graph through these points.

Sketching a compressed tangent

Sketch a graph of one period of the function y = 0.5 tan ( π 2 x ) .

First, we identify A and B .

An illustration of equations showing that A is the coefficient of tangent and B is the coefficient of x, which is within the tangent function.

Because A = 0.5 and B = π 2 , we can find the stretching/compressing factor and period. The period is π π 2 = 2 , so the asymptotes are at x = ± 1. At a quarter period from the origin, we have

f ( 0.5 ) = 0.5 tan ( 0.5 π 2 ) = 0.5 tan ( π 4 ) = 0.5

This means the curve must pass through the points ( 0.5 , 0.5 ) , ( 0 , 0 ) , and ( 0.5 , −0.5 ) . The only inflection point is at the origin. [link] shows the graph of one period of the function.

A graph of one period of a modified tangent function, with asymptotes at x=-1 and x=1.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch a graph of f ( x ) = 3 tan ( π 6 x ) .

A graph of two periods of a modified tangent function, with asymptotes at x=-3 and x=3.
Got questions? Get instant answers now!

Graphing one period of a shifted tangent function

Now that we can graph a tangent function that is stretched or compressed, we will add a vertical and/or horizontal (or phase) shift. In this case, we add C and D to the general form of the tangent function.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask