# 8.1 Graphs of the sine and cosine functions

 Page 1 / 13
In this section, you will:
• Graph variations of  y=sin( x )  and  y=cos( x ).
• Use phase shifts of sine and cosine curves.

White light, such as the light from the sun, is not actually white at all. Instead, it is a composition of all the colors of the rainbow in the form of waves. The individual colors can be seen only when white light passes through an optical prism that separates the waves according to their wavelengths to form a rainbow.

Light waves can be represented graphically by the sine function. In the chapter on Trigonometric Functions , we examined trigonometric functions such as the sine function. In this section, we will interpret and create graphs of sine and cosine functions.

## Graphing sine and cosine functions

Recall that the sine and cosine functions relate real number values to the x - and y -coordinates of a point on the unit circle. So what do they look like on a graph on a coordinate plane? Let’s start with the sine function    . We can create a table of values and use them to sketch a graph. [link] lists some of the values for the sine function on a unit circle.

 $x$ $0$ $\frac{\pi }{6}$ $\frac{\pi }{4}$ $\frac{\pi }{3}$ $\frac{\pi }{2}$ $\frac{2\pi }{3}$ $\frac{3\pi }{4}$ $\frac{5\pi }{6}$ $\pi$ $\mathrm{sin}\left(x\right)$ $0$ $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ $1$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $0$

Plotting the points from the table and continuing along the x -axis gives the shape of the sine function. See [link] .

Notice how the sine values are positive between 0 and $\text{\hspace{0.17em}}\pi ,\text{\hspace{0.17em}}$ which correspond to the values of the sine function in quadrants I and II on the unit circle, and the sine values are negative between $\text{\hspace{0.17em}}\pi \text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}2\pi ,\text{\hspace{0.17em}}$ which correspond to the values of the sine function in quadrants III and IV on the unit circle. See [link] .

Now let’s take a similar look at the cosine function    . Again, we can create a table of values and use them to sketch a graph. [link] lists some of the values for the cosine function on a unit circle.

 $\mathbf{x}$ $0$ $\frac{\pi }{6}$ $\frac{\pi }{4}$ $\frac{\pi }{3}$ $\frac{\pi }{2}$ $\frac{2\pi }{3}$ $\frac{3\pi }{4}$ $\frac{5\pi }{6}$ $\pi$ $\mathbf{cos}\left(\mathbf{x}\right)$ $1$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $0$ $-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$ $-1$

As with the sine function, we can plots points to create a graph of the cosine function as in [link] .

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all real numbers. By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes clear that the range of both functions must be the interval $\text{\hspace{0.17em}}\left[-1,1\right].$

In both graphs, the shape of the graph repeats after $\text{\hspace{0.17em}}2\pi ,\text{\hspace{0.17em}}$ which means the functions are periodic with a period of $\text{\hspace{0.17em}}2\pi .\text{\hspace{0.17em}}$ A periodic function    is a function for which a specific horizontal shift    , P , results in a function equal to the original function: $\text{\hspace{0.17em}}f\left(x+P\right)=f\left(x\right)\text{\hspace{0.17em}}$ for all values of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ in the domain of $\text{\hspace{0.17em}}f.\text{\hspace{0.17em}}$ When this occurs, we call the smallest such horizontal shift with $\text{\hspace{0.17em}}P>0\text{\hspace{0.17em}}$ the period    of the function. [link] shows several periods of the sine and cosine functions.

Looking again at the sine and cosine functions on a domain centered at the y -axis helps reveal symmetries. As we can see in [link] , the sine function    is symmetric about the origin. Recall from The Other Trigonometric Functions that we determined from the unit circle that the sine function is an odd function because $\text{\hspace{0.17em}}\mathrm{sin}\left(-x\right)=-\mathrm{sin}\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ Now we can clearly see this property from the graph.

#### Questions & Answers

In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

 By By By By David Martin