<< Chapter < Page Chapter >> Page >

The other characteristic of the linear function is its slope .

Let’s consider the following function.

f ( x ) = 1 2 x + 1

The slope is 1 2 . Because the slope is positive, we know the graph will slant upward from left to right. The y- intercept is the point on the graph when x = 0. The graph crosses the y -axis at ( 0 , 1 ) . Now we know the slope and the y -intercept. We can begin graphing by plotting the point ( 0 , 1 ) . We know that the slope is the change in the y -coordinate over the change in the x -coordinate. This is commonly referred to as rise over run, m = rise run . From our example, we have m = 1 2 , which means that the rise is 1 and the run is 2. So starting from our y -intercept ( 0 , 1 ) , we can rise 1 and then run 2, or run 2 and then rise 1. We repeat until we have a few points, and then we draw a line through the points as shown in [link] .

This graph shows how to calculate the rise over run for the slope on an x, y coordinate plane.  The x-axis runs from negative 2 to 7. The y-axis runs from negative 2 to 5. The line extends right and upward from point (0,1), which is the y-intercept.  A dotted line extends two units to the right from point (0, 1) and is labeled Run = 2.  The same dotted line extends upwards one unit and is labeled Rise =1.

Graphical interpretation of a linear function

In the equation f ( x ) = m x + b

  • b is the y -intercept of the graph and indicates the point ( 0 , b ) at which the graph crosses the y -axis.
  • m is the slope of the line and indicates the vertical displacement (rise) and horizontal displacement (run) between each successive pair of points. Recall the formula for the slope:
m = change in output (rise) change in input (run) = Δ y Δ x = y 2 y 1 x 2 x 1

Do all linear functions have y -intercepts?

Yes. All linear functions cross the y-axis and therefore have y-intercepts. (Note: A vertical line is parallel to the y-axis does not have a y-intercept, but it is not a function .)

Given the equation for a linear function, graph the function using the y -intercept and slope.

  1. Evaluate the function at an input value of zero to find the y- intercept.
  2. Identify the slope as the rate of change of the input value.
  3. Plot the point represented by the y- intercept.
  4. Use rise run to determine at least two more points on the line.
  5. Sketch the line that passes through the points.

Graphing by using the y- Intercept and slope

Graph f ( x ) = 2 3 x + 5 using the y- intercept and slope.

Evaluate the function at x = 0 to find the y- intercept. The output value when x = 0 is 5, so the graph will cross the y -axis at ( 0 , 5 ) .

According to the equation for the function, the slope of the line is 2 3 . This tells us that for each vertical decrease in the “rise” of 2 units, the “run” increases by 3 units in the horizontal direction. We can now graph the function by first plotting the y -intercept on the graph in [link] . From the initial value ( 0 , 5 ) we move down 2 units and to the right 3 units. We can extend the line to the left and right by repeating, and then drawing a line through the points.

This graph shows a decreasing function graphed on an x y coordinate plane. The x-axis runs from negative 3 to 7, and the y-axis runs from negative 1 to 7. The function passes through the points (0,5); (3,3); and (6,1).  Arrows extend downward two units and to the right three units from each point to the next point.
Graph of f ( x ) = −2 / 3 x + 5 and shows how to calculate the rise over run for the slope.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find a point on the graph we drew in [link] that has a negative x -value.

Possible answers include ( 3 , 7 ) , ( 6 , 9 ) , or ( 9 , 11 ) .

Got questions? Get instant answers now!

Graphing a function using transformations

Another option for graphing is to use a transformation of the identity function f ( x ) = x . A function may be transformed by a shift up, down, left, or right. A function may also be transformed using a reflection, stretch, or compression.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask