<< Chapter < Page Chapter >> Page >
In this section you will:
  • Find function values for the sine and cosine of 30°  or  ( π 6 ) , 45°  or  ( π 4 ) , and 60  or  ( π 3 ) .
  • Identify the domain and range of sine and cosine functions.
  • Find reference angles.
  • Use reference angles to evaluate trigonometric functions.
Photo of a ferris wheel.
The Singapore Flyer is the world’s tallest Ferris wheel. (credit: ʺVibin JKʺ/Flickr)

Looking for a thrill? Then consider a ride on the Singapore Flyer, the world’s tallest Ferris wheel. Located in Singapore, the Ferris wheel soars to a height of 541 feet—a little more than a tenth of a mile! Described as an observation wheel, riders enjoy spectacular views as they travel from the ground to the peak and down again in a repeating pattern. In this section, we will examine this type of revolving motion around a circle. To do so, we need to define the type of circle first, and then place that circle on a coordinate system. Then we can discuss circular motion in terms of the coordinate pairs.

Finding trigonometric functions using the unit circle

We have already defined the trigonometric functions in terms of right triangles. In this section, we will redefine them in terms of the unit circle. Recall this a unit circle is a circle centered at the origin with radius 1, as shown in [link] . The angle (in radians) that t intercepts forms an arc of length s . Using the formula s = r t , and knowing that r = 1 , we see that for a unit circle, s = t .

The x- and y- axes divide the coordinate plane into four quarters called quadrants. We label these quadrants to mimic the direction a positive angle would sweep. The four quadrants are labeled I, II, III, and IV.

For any angle t , we can label the intersection of the terminal side and the unit circle as by its coordinates, ( x , y ) . The coordinates x and y will be the outputs of the trigonometric functions f ( t ) = cos t and f ( t ) = sin t , respectively. This means x = cos  t and y = sin  t .

Graph of a circle with angle t, radius of 1, and an arc created by the angle with length s. The terminal side of the angle intersects the circle at the point (x,y).
Unit circle where the central angle is t radians

Unit circle

A unit circle    has a center at ( 0 , 0 ) and radius 1. In a unit circle, the length of the intercepted arc is equal to the radian measure of the central angle t .

Let ( x , y ) be the endpoint on the unit circle of an arc of arc length     s . The ( x , y ) coordinates of this point can be described as functions of the angle.

Defining sine and cosine functions from the unit circle

The sine function relates a real number t to the y -coordinate of the point where the corresponding angle intercepts the unit circle. More precisely, the sine of an angle t equals the y -value of the endpoint on the unit circle of an arc of length t . In [link] , the sine is equal to y . Like all functions, the sine function    has an input and an output. Its input is the measure of the angle; its output is the y -coordinate of the corresponding point on the unit circle.

The cosine function    of an angle t equals the x -value of the endpoint on the unit circle of an arc of length t . In [link] , the cosine is equal to x .

Illustration of an angle t, with terminal side length equal to 1, and an arc created by angle with length t. The terminal side of the angle intersects the circle at the point (x,y), which is equivalent to (cos t, sin t).

Because it is understood that sine and cosine are functions, we do not always need to write them with parentheses: sin t is the same as sin ( t ) and cos t is the same as cos ( t ) . Likewise, cos 2 t is a commonly used shorthand notation for ( cos ( t ) ) 2 . Be aware that many calculators and computers do not recognize the shorthand notation. When in doubt, use the extra parentheses when entering calculations into a calculator or computer.

Questions & Answers

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
Payal Reply
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
Please you teach
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask