# 9.4 Sum-to-product and product-to-sum formulas  (Page 4/6)

 Page 4 / 6

$\mathrm{cos}\left(6t\right)+\mathrm{cos}\left(4t\right)$

$2\text{\hspace{0.17em}}\mathrm{cos}\left(5t\right)\mathrm{cos}\text{\hspace{0.17em}}t$

$\mathrm{sin}\left(3x\right)+\mathrm{sin}\left(7x\right)$

$\mathrm{cos}\left(7x\right)+\mathrm{cos}\left(-7x\right)$

$2\text{\hspace{0.17em}}\mathrm{cos}\left(7x\right)$

$\mathrm{sin}\left(3x\right)-\mathrm{sin}\left(-3x\right)$

$\mathrm{cos}\left(3x\right)+\mathrm{cos}\left(9x\right)$

$2\text{\hspace{0.17em}}\mathrm{cos}\left(6x\right)\mathrm{cos}\left(3x\right)$

$\mathrm{sin}\text{\hspace{0.17em}}h-\mathrm{sin}\left(3h\right)$

For the following exercises, evaluate the product for the following using a sum or difference of two functions. Evaluate exactly.

$\mathrm{cos}\left(45°\right)\mathrm{cos}\left(15°\right)$

$\frac{1}{4}\left(1+\sqrt{3}\right)$

$\mathrm{cos}\left(45°\right)\mathrm{sin}\left(15°\right)$

$\mathrm{sin}\left(-345°\right)\mathrm{sin}\left(-15°\right)$

$\frac{1}{4}\left(\sqrt{3}-2\right)$

$\mathrm{sin}\left(195°\right)\mathrm{cos}\left(15°\right)$

$\mathrm{sin}\left(-45°\right)\mathrm{sin}\left(-15°\right)$

$\frac{1}{4}\left(\sqrt{3}-1\right)$

For the following exercises, evaluate the product using a sum or difference of two functions. Leave in terms of sine and cosine.

$\mathrm{cos}\left(23°\right)\mathrm{sin}\left(17°\right)$

$2\text{\hspace{0.17em}}\mathrm{sin}\left(100°\right)\mathrm{sin}\left(20°\right)$

$\mathrm{cos}\left(80°\right)-\mathrm{cos}\left(120°\right)$

$2\text{\hspace{0.17em}}\mathrm{sin}\left(-100°\right)\mathrm{sin}\left(-20°\right)$

$\mathrm{sin}\left(213°\right)\mathrm{cos}\left(8°\right)$

$\frac{1}{2}\left(\mathrm{sin}\left(221°\right)+\mathrm{sin}\left(205°\right)\right)$

$2\text{\hspace{0.17em}}\mathrm{cos}\left(56°\right)\mathrm{cos}\left(47°\right)$

For the following exercises, rewrite the sum as a product of two functions. Leave in terms of sine and cosine.

$\mathrm{sin}\left(76°\right)+\mathrm{sin}\left(14°\right)$

$\sqrt{2}\text{\hspace{0.17em}}\mathrm{cos}\left(31°\right)$

$\mathrm{cos}\left(58°\right)-\mathrm{cos}\left(12°\right)$

$\mathrm{sin}\left(101°\right)-\mathrm{sin}\left(32°\right)$

$2\text{\hspace{0.17em}}\mathrm{cos}\left(66.5°\right)\mathrm{sin}\left(34.5°\right)$

$\mathrm{cos}\left(100°\right)+\mathrm{cos}\left(200°\right)$

$\mathrm{sin}\left(-1°\right)+\mathrm{sin}\left(-2°\right)$

$2\text{\hspace{0.17em}}\mathrm{sin}\left(-1.5°\right)\mathrm{cos}\left(0.5°\right)$

For the following exercises, prove the identity.

$\frac{\mathrm{cos}\left(a+b\right)}{\mathrm{cos}\left(a-b\right)}=\frac{1-\mathrm{tan}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}b}{1+\mathrm{tan}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}b}$

$4\text{\hspace{0.17em}}\mathrm{sin}\left(3x\right)\mathrm{cos}\left(4x\right)=2\text{\hspace{0.17em}}\mathrm{sin}\left(7x\right)-2\text{\hspace{0.17em}}\mathrm{sin}x$

$\text{\hspace{0.17em}}\begin{array}{l}2\text{\hspace{0.17em}}\mathrm{sin}\left(7x\right)-2\text{\hspace{0.17em}}\mathrm{sin}x=2\text{\hspace{0.17em}}\mathrm{sin}\left(4x+3x\right)-2\text{\hspace{0.17em}}\mathrm{sin}\left(4x-3x\right)=\hfill \\ 2\left(\mathrm{sin}\left(4x\right)\mathrm{cos}\left(3x\right)+\mathrm{sin}\left(3x\right)\mathrm{cos}\left(4x\right)\right)-2\left(\mathrm{sin}\left(4x\right)\mathrm{cos}\left(3x\right)-\mathrm{sin}\left(3x\right)\mathrm{cos}\left(4x\right)\right)=\hfill \\ 2\text{\hspace{0.17em}}\mathrm{sin}\left(4x\right)\mathrm{cos}\left(3x\right)+2\text{\hspace{0.17em}}\mathrm{sin}\left(3x\right)\mathrm{cos}\left(4x\right)\right)-2\text{\hspace{0.17em}}\mathrm{sin}\left(4x\right)\mathrm{cos}\left(3x\right)+2\text{\hspace{0.17em}}\mathrm{sin}\left(3x\right)\mathrm{cos}\left(4x\right)\right)=\hfill \\ 4\text{\hspace{0.17em}}\mathrm{sin}\left(3x\right)\mathrm{cos}\left(4x\right)\hfill \\ \hfill \end{array}$

$\frac{6\text{\hspace{0.17em}}\mathrm{cos}\left(8x\right)\mathrm{sin}\left(2x\right)}{\mathrm{sin}\left(-6x\right)}=-3\text{\hspace{0.17em}}\mathrm{sin}\left(10x\right)\mathrm{csc}\left(6x\right)+3$

$\mathrm{sin}\text{\hspace{0.17em}}x+\mathrm{sin}\left(3x\right)=4\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}{\mathrm{cos}}^{2}x$

$\begin{array}{ccc}\hfill \mathrm{sin}\text{\hspace{0.17em}}x+\mathrm{sin}\left(3x\right)& =& 2\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{4x}{2}\right)\mathrm{cos}\left(\frac{-2x}{2}\right)=\hfill \\ \hfill 2\text{\hspace{0.17em}}\mathrm{sin}\left(2x\right)\mathrm{cos}\text{\hspace{0.17em}}x& =& 2\left(2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x\right)\mathrm{cos}\text{\hspace{0.17em}}x=\hfill \\ 4\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}{\mathrm{cos}}^{2}\text{\hspace{0.17em}}x& & \end{array}$

$2\left({\mathrm{cos}}^{3}x-\mathrm{cos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}{\mathrm{sin}}^{2}x\right)=\mathrm{cos}\left(3x\right)+\mathrm{cos}\text{\hspace{0.17em}}x$

$2\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\left(3x\right)=\mathrm{sec}\text{\hspace{0.17em}}x\left(\mathrm{sin}\left(4x\right)-\mathrm{sin}\left(2x\right)\right)$

$\begin{array}{l}2\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\left(3x\right)=\frac{2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\left(3x\right)}{\mathrm{cos}\text{\hspace{0.17em}}x}=\frac{2\left(.5\left(\mathrm{sin}\left(4x\right)-\mathrm{sin}\left(2x\right)\right)\right)}{\mathrm{cos}\text{\hspace{0.17em}}x}=\\ \frac{1}{\mathrm{cos}\text{\hspace{0.17em}}x}\left(\mathrm{sin}\left(4x\right)-\mathrm{sin}\left(2x\right)\right)=\mathrm{sec}\text{\hspace{0.17em}}x\left(\mathrm{sin}\left(4x\right)-\mathrm{sin}\left(2x\right)\right)\end{array}$

$\mathrm{cos}\left(a+b\right)+\mathrm{cos}\left(a-b\right)=2\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}b$

## Numeric

For the following exercises, rewrite the sum as a product of two functions or the product as a sum of two functions. Give your answer in terms of sines and cosines. Then evaluate the final answer numerically, rounded to four decimal places.

$\mathrm{cos}\left(58°\right)+\mathrm{cos}\left(12°\right)$

$2\text{\hspace{0.17em}}\mathrm{cos}\left(35°\right)\mathrm{cos}\left(23°\right),\text{1.5081}$

$\mathrm{sin}\left(2°\right)-\mathrm{sin}\left(3°\right)$

$\mathrm{cos}\left(44°\right)-\mathrm{cos}\left(22°\right)$

$-2\text{\hspace{0.17em}}\mathrm{sin}\left(33°\right)\mathrm{sin}\left(11°\right),-0.2078$

$\mathrm{cos}\left(176°\right)\mathrm{sin}\left(9°\right)$

$\mathrm{sin}\left(-14°\right)\mathrm{sin}\left(85°\right)$

$\frac{1}{2}\left(\mathrm{cos}\left(99°\right)-\mathrm{cos}\left(71°\right)\right),-0.2410$

## Technology

For the following exercises, algebraically determine whether each of the given equation is an identity. If it is not an identity, replace the right-hand side with an expression equivalent to the left side. Verify the results by graphing both expressions on a calculator.

$2\text{\hspace{0.17em}}\mathrm{sin}\left(2x\right)\mathrm{sin}\left(3x\right)=\mathrm{cos}\text{\hspace{0.17em}}x-\mathrm{cos}\left(5x\right)$

$\frac{\mathrm{cos}\left(10\theta \right)+\mathrm{cos}\left(6\theta \right)}{\mathrm{cos}\left(6\theta \right)-\mathrm{cos}\left(10\theta \right)}=\mathrm{cot}\left(2\theta \right)\mathrm{cot}\left(8\theta \right)$

It is an identity.

$\frac{\mathrm{sin}\left(3x\right)-\mathrm{sin}\left(5x\right)}{\mathrm{cos}\left(3x\right)+\mathrm{cos}\left(5x\right)}=\mathrm{tan}\text{\hspace{0.17em}}x$

$2\text{\hspace{0.17em}}\mathrm{cos}\left(2x\right)\mathrm{cos}\text{\hspace{0.17em}}x+\mathrm{sin}\left(2x\right)\mathrm{sin}\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x$

It is not an identity, but $\text{\hspace{0.17em}}2\text{\hspace{0.17em}}{\mathrm{cos}}^{3}x\text{\hspace{0.17em}}$ is.

$\frac{\mathrm{sin}\left(2x\right)+\mathrm{sin}\left(4x\right)}{\mathrm{sin}\left(2x\right)-\mathrm{sin}\left(4x\right)}=-\mathrm{tan}\left(3x\right)\mathrm{cot}\text{\hspace{0.17em}}x$

For the following exercises, simplify the expression to one term, then graph the original function and your simplified version to verify they are identical.

$\frac{\mathrm{sin}\left(9t\right)-\mathrm{sin}\left(3t\right)}{\mathrm{cos}\left(9t\right)+\mathrm{cos}\left(3t\right)}$

$\mathrm{tan}\left(3t\right)$

$2\text{\hspace{0.17em}}\mathrm{sin}\left(8x\right)\mathrm{cos}\left(6x\right)-\mathrm{sin}\left(2x\right)$

$\frac{\mathrm{sin}\left(3x\right)-\mathrm{sin}\text{\hspace{0.17em}}x}{\mathrm{sin}\text{\hspace{0.17em}}x}$

$2\text{\hspace{0.17em}}\mathrm{cos}\left(2x\right)$

$\frac{\mathrm{cos}\left(5x\right)+\mathrm{cos}\left(3x\right)}{\mathrm{sin}\left(5x\right)+\mathrm{sin}\left(3x\right)}$

$\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\left(15x\right)-\mathrm{cos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{sin}\left(15x\right)$

$-\mathrm{sin}\left(14x\right)$

## Extensions

For the following exercises, prove the following sum-to-product formulas.

$\mathrm{sin}\text{\hspace{0.17em}}x-\mathrm{sin}\text{\hspace{0.17em}}y=2\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{x-y}{2}\right)\mathrm{cos}\left(\frac{x+y}{2}\right)$

$\mathrm{cos}\text{\hspace{0.17em}}x+\mathrm{cos}\text{\hspace{0.17em}}y=2\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{x+y}{2}\right)\mathrm{cos}\left(\frac{x-y}{2}\right)$

Start with $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x+\mathrm{cos}\text{\hspace{0.17em}}y.\text{\hspace{0.17em}}$ Make a substitution and let $\text{\hspace{0.17em}}x=\alpha +\beta \text{\hspace{0.17em}}$ and let $\text{\hspace{0.17em}}y=\alpha -\beta ,$ so $\mathrm{cos}\text{\hspace{0.17em}}x+\mathrm{cos}\text{\hspace{0.17em}}y$ becomes $\begin{array}{}\\ \mathrm{cos}\left(\alpha +\beta \right)+\mathrm{cos}\left(\alpha -\beta \right)=\mathrm{cos}\alpha \mathrm{cos}\beta -\mathrm{sin}\alpha \mathrm{sin}\beta +\mathrm{cos}\alpha \mathrm{cos}\beta +\mathrm{sin}\alpha \mathrm{sin}\beta =\\ 2\mathrm{cos}\phantom{\rule{0.2em}{0ex}}\alpha \mathrm{cos}\phantom{\rule{0.2em}{0ex}}\beta \end{array}$

Since $\text{\hspace{0.17em}}x=\alpha +\beta \text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y=\alpha -\beta ,$ we can solve for $\text{\hspace{0.17em}}\alpha$ and $\beta$ in terms of x and y and substitute in for $2\mathrm{cos}\alpha \mathrm{cos}\beta$ and get $2\mathrm{cos}\left(\frac{x+y}{2}\right)\mathrm{cos}\left(\frac{x-y}{2}\right).$

For the following exercises, prove the identity.

$\frac{\mathrm{sin}\left(6x\right)+\mathrm{sin}\left(4x\right)}{\mathrm{sin}\left(6x\right)-\mathrm{sin}\left(4x\right)}=\mathrm{tan}\text{\hspace{0.17em}}\left(5x\right)\mathrm{cot}\text{\hspace{0.17em}}x$

$\frac{\mathrm{cos}\left(3x\right)+\mathrm{cos}\text{\hspace{0.17em}}x}{\mathrm{cos}\left(3x\right)-\mathrm{cos}\text{\hspace{0.17em}}x}=-\mathrm{cot}\text{\hspace{0.17em}}\left(2x\right)\mathrm{cot}\text{\hspace{0.17em}}x$

$\frac{\mathrm{cos}\left(3x\right)+\mathrm{cos}\text{\hspace{0.17em}}x}{\mathrm{cos}\left(3x\right)-\mathrm{cos}\text{\hspace{0.17em}}x}=\frac{2\text{\hspace{0.17em}}\mathrm{cos}\left(2x\right)\mathrm{cos}\text{\hspace{0.17em}}x}{-2\text{\hspace{0.17em}}\mathrm{sin}\left(2x\right)\mathrm{sin}\text{\hspace{0.17em}}x}=-\mathrm{cot}\left(2x\right)\mathrm{cot}\text{\hspace{0.17em}}x$

$\frac{\mathrm{cos}\left(6y\right)+\mathrm{cos}\left(8y\right)}{\mathrm{sin}\left(6y\right)-\mathrm{sin}\left(4y\right)}=\mathrm{cot}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\left(7y\right)\mathrm{sec}\text{\hspace{0.17em}}\left(5y\right)$

$\frac{\mathrm{cos}\left(2y\right)-\mathrm{cos}\left(4y\right)}{\mathrm{sin}\left(2y\right)+\mathrm{sin}\left(4y\right)}=\mathrm{tan}\text{\hspace{0.17em}}y$

$\begin{array}{ccc}\hfill \frac{\mathrm{cos}\left(2y\right)-\mathrm{cos}\left(4y\right)}{\mathrm{sin}\left(2y\right)+\mathrm{sin}\left(4y\right)}& =& \frac{-2\text{\hspace{0.17em}}\mathrm{sin}\left(3y\right)\mathrm{sin}\left(-y\right)}{2\text{\hspace{0.17em}}\mathrm{sin}\left(3y\right)\mathrm{cos}\text{\hspace{0.17em}}y}=\hfill \\ \hfill \frac{2\text{\hspace{0.17em}}\mathrm{sin}\left(3y\right)\mathrm{sin}\left(y\right)}{2\text{\hspace{0.17em}}\mathrm{sin}\left(3y\right)\mathrm{cos}\text{\hspace{0.17em}}y}& =& \mathrm{tan}\text{\hspace{0.17em}}y\hfill \end{array}$

$\frac{\mathrm{sin}\left(10x\right)-\mathrm{sin}\left(2x\right)}{\mathrm{cos}\left(10x\right)+\mathrm{cos}\left(2x\right)}=\mathrm{tan}\left(4x\right)$

$\mathrm{cos}\text{\hspace{0.17em}}x-\mathrm{cos}\left(3x\right)=4\text{\hspace{0.17em}}{\mathrm{sin}}^{2}x\mathrm{cos}\text{\hspace{0.17em}}x$

$\begin{array}{l}\mathrm{cos}\text{\hspace{0.17em}}x-\mathrm{cos}\left(3x\right)=-2\text{\hspace{0.17em}}\mathrm{sin}\left(2x\right)\mathrm{sin}\left(-x\right)=\\ 2\left(2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x\right)\mathrm{sin}\text{\hspace{0.17em}}x=4\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x\end{array}$

${\left(\mathrm{cos}\left(2x\right)-\mathrm{cos}\left(4x\right)\right)}^{2}+{\left(\mathrm{sin}\left(4x\right)+\mathrm{sin}\left(2x\right)\right)}^{2}=4\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\left(3x\right)$

$\mathrm{tan}\left(\frac{\pi }{4}-t\right)=\frac{1-\mathrm{tan}\text{\hspace{0.17em}}t}{1+\mathrm{tan}\text{\hspace{0.17em}}t}$

$\mathrm{tan}\left(\frac{\pi }{4}-t\right)=\frac{\mathrm{tan}\left(\frac{\pi }{4}\right)-\mathrm{tan}t}{1+\mathrm{tan}\left(\frac{\pi }{4}\right)\mathrm{tan}\left(t\right)}=\frac{1-\mathrm{tan}t}{1+\mathrm{tan}t}$

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
e power cos hyperbolic (x+iy)
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
why {2kπ} union {kπ}={kπ}?
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
what is complex numbers
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Solve 2cos x + 3sin x = 0.5