<< Chapter < Page Chapter >> Page >

Given data of input and corresponding outputs from a linear function, find the best fit line using linear regression.

  1. Enter the input in List 1 (L1).
  2. Enter the output in List 2 (L2).
  3. On a graphing utility, select Linear Regression (LinReg).

Finding a least squares regression line

Find the least squares regression line using the cricket-chirp data in [link] .

  1. Enter the input (chirps) in List 1 (L1).
  2. Enter the output (temperature) in List 2 (L2). See [link] .
    L1 44 35 20.4 33 31 35 18.5 37 26
    L2 80.5 70.5 57 66 68 72 52 73.5 53
  3. On a graphing utility, select Linear Regression (LinReg). Using the cricket chirp data from earlier, with technology we obtain the equation:
T ( c ) = 30.281 + 1.143 c
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Will there ever be a case where two different lines will serve as the best fit for the data?

No. There is only one best fit line.

Distinguishing between linear and nonlinear models

As we saw above with the cricket-chirp model, some data exhibit strong linear trends, but other data, like the final exam scores plotted by age, are clearly nonlinear. Most calculators and computer software can also provide us with the correlation coefficient    , which is a measure of how closely the line fits the data. Many graphing calculators require the user to turn a ”diagnostic on” selection to find the correlation coefficient, which mathematicians label as r The correlation coefficient provides an easy way to get an idea of how close to a line the data falls.

We should compute the correlation coefficient only for data that follows a linear pattern or to determine the degree to which a data set is linear. If the data exhibits a nonlinear pattern, the correlation coefficient for a linear regression is meaningless. To get a sense for the relationship between the value of r and the graph of the data, [link] shows some large data sets with their correlation coefficients. Remember, for all plots, the horizontal axis shows the input and the vertical axis shows the output.

Correlation coefficients values range from -1.0 - 1.0.  Collections of dots representing an example of each kind of correlation coefficient are plotted underneath them.  The closer to 1.0 the more the points are grouped tightly to form a line in the positive direction.  The closer to -1.0 the more the points are grouped tightly to form a line in the negative direction.  The closer to 0 the points are very scattered and do not form a line.  Several shapes are displayed at the bottom row, none of which are lines, but all of them have values of 0.
Plotted data and related correlation coefficients. (credit: “DenisBoigelot,” Wikimedia Commons)

Correlation coefficient

The correlation coefficient is a value, r , between –1 and 1.

  • r > 0 suggests a positive (increasing) relationship
  • r < 0 suggests a negative (decreasing) relationship
  • The closer the value is to 0, the more scattered the data.
  • The closer the value is to 1 or –1, the less scattered the data is.

Finding a correlation coefficient

Calculate the correlation coefficient for cricket-chirp data in [link] .

Because the data appear to follow a linear pattern, we can use technology to calculate r Enter the inputs and corresponding outputs and select the Linear Regression. The calculator will also provide you with the correlation coefficient, r = 0.9509. This value is very close to 1, which suggests a strong increasing linear relationship.

Note: For some calculators, the Diagnostics must be turned "on" in order to get the correlation coefficient when linear regression is performed: [2nd]>[0]>[alpha][x–1], then scroll to DIAGNOSTICSON.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Fitting a regression line to a set of data

Once we determine that a set of data is linear using the correlation coefficient, we can use the regression line to make predictions. As we learned above, a regression line is a line that is closest to the data in the scatter plot, which means that only one such line is a best fit for the data.

Questions & Answers

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
Payal Reply
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
Please you teach
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask