# 10.3 Polar coordinates

 Page 1 / 8
In this section, you will:
• Plot points using polar coordinates.
• Convert from polar coordinates to rectangular coordinates.
• Convert from rectangular coordinates to polar coordinates.
• Transform equations between polar and rectangular forms.
• Identify and graph polar equations by converting to rectangular equations.

Over 12 kilometers from port, a sailboat encounters rough weather and is blown off course by a 16-knot wind (see [link] ). How can the sailor indicate his location to the Coast Guard? In this section, we will investigate a method of representing location that is different from a standard coordinate grid.

## Plotting points using polar coordinates

When we think about plotting points in the plane, we usually think of rectangular coordinates $\text{\hspace{0.17em}}\left(x,y\right)\text{\hspace{0.17em}}$ in the Cartesian coordinate plane. However, there are other ways of writing a coordinate pair and other types of grid systems. In this section, we introduce to polar coordinates    , which are points labeled $\text{\hspace{0.17em}}\left(r,\theta \right)\text{\hspace{0.17em}}$ and plotted on a polar grid. The polar grid is represented as a series of concentric circles radiating out from the pole    , or the origin of the coordinate plane.

The polar grid is scaled as the unit circle with the positive x- axis now viewed as the polar axis    and the origin as the pole. The first coordinate $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ is the radius or length of the directed line segment from the pole. The angle $\text{\hspace{0.17em}}\theta ,$ measured in radians, indicates the direction of $\text{\hspace{0.17em}}r.\text{\hspace{0.17em}}$ We move counterclockwise from the polar axis by an angle of $\text{\hspace{0.17em}}\theta ,$ and measure a directed line segment the length of $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ in the direction of $\text{\hspace{0.17em}}\theta .\text{\hspace{0.17em}}$ Even though we measure $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ first and then $\text{\hspace{0.17em}}r,$ the polar point is written with the r -coordinate first. For example, to plot the point $\text{\hspace{0.17em}}\left(2,\frac{\pi }{4}\right),$ we would move $\text{\hspace{0.17em}}\frac{\pi }{4}\text{\hspace{0.17em}}$ units in the counterclockwise direction and then a length of 2 from the pole. This point is plotted on the grid in [link] .

## Plotting a point on the polar grid

Plot the point $\text{\hspace{0.17em}}\left(3,\frac{\pi }{2}\right)\text{\hspace{0.17em}}$ on the polar grid.

The angle $\text{\hspace{0.17em}}\frac{\pi }{2}\text{\hspace{0.17em}}$ is found by sweeping in a counterclockwise direction 90° from the polar axis. The point is located at a length of 3 units from the pole in the $\text{\hspace{0.17em}}\frac{\pi }{2}\text{\hspace{0.17em}}$ direction, as shown in [link] .

Plot the point $\text{\hspace{0.17em}}\left(2,\text{\hspace{0.17em}}\frac{\pi }{3}\right)\text{\hspace{0.17em}}$ in the polar grid .

## Plotting a point in the polar coordinate system with a negative component

Plot the point $\text{\hspace{0.17em}}\left(-2,\text{\hspace{0.17em}}\frac{\pi }{6}\right)\text{\hspace{0.17em}}$ on the polar grid.

We know that $\text{\hspace{0.17em}}\frac{\pi }{6}\text{\hspace{0.17em}}$ is located in the first quadrant. However, $\text{\hspace{0.17em}}r=-2.\text{\hspace{0.17em}}$ We can approach plotting a point with a negative $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ in two ways:

1. Plot the point $\text{\hspace{0.17em}}\left(2,\frac{\pi }{6}\right)\text{\hspace{0.17em}}$ by moving $\text{\hspace{0.17em}}\frac{\pi }{6}\text{\hspace{0.17em}}$ in the counterclockwise direction and extending a directed line segment 2 units into the first quadrant. Then retrace the directed line segment back through the pole, and continue 2 units into the third quadrant;
2. Move $\text{\hspace{0.17em}}\frac{\pi }{6}\text{\hspace{0.17em}}$ in the counterclockwise direction, and draw the directed line segment from the pole 2 units in the negative direction, into the third quadrant.

See [link] (a). Compare this to the graph of the polar coordinate $\text{\hspace{0.17em}}\left(2,\frac{\pi }{6}\right)\text{\hspace{0.17em}}$ shown in [link] (b).

Plot the points $\text{\hspace{0.17em}}\left(3,-\frac{\pi }{6}\right)$ and $\text{\hspace{0.17em}}\left(2,\frac{9\pi }{4}\right)\text{\hspace{0.17em}}$ on the same polar grid.

## Converting from polar coordinates to rectangular coordinates

When given a set of polar coordinates    , we may need to convert them to rectangular coordinates . To do so, we can recall the relationships that exist among the variables $\text{\hspace{0.17em}}x,\text{\hspace{0.17em}}y,\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\theta .$

In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
tanh`(x-iy) =A+iB, find A and B
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
e power cos hyperbolic (x+iy)
10y
Michael