# 3.4 Composition of functions  (Page 7/9)

 Page 7 / 9

What is the composition of two functions, $\text{\hspace{0.17em}}f\circ g?$

If the order is reversed when composing two functions, can the result ever be the same as the answer in the original order of the composition? If yes, give an example. If no, explain why not.

Yes. Sample answer: Let Then $\text{\hspace{0.17em}}f\left(g\left(x\right)\right)=f\left(x-1\right)=\left(x-1\right)+1=x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(f\left(x\right)\right)=g\left(x+1\right)=\left(x+1\right)-1=x.\text{\hspace{0.17em}}$ So $\text{\hspace{0.17em}}f\circ g=g\circ f.$

How do you find the domain for the composition of two functions, $\text{\hspace{0.17em}}f\circ g?$

## Algebraic

For the following exercises, determine the domain for each function in interval notation.

Given and find and

$\left(f+g\right)\left(x\right)=2x+6,\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(-\infty ,\infty \right)$

$\left(f-g\right)\left(x\right)=2{x}^{2}+2x-6,\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(-\infty ,\infty \right)$

$\left(fg\right)\left(x\right)=-{x}^{4}-2{x}^{3}+6{x}^{2}+12x,\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(-\infty ,\infty \right)$

$\left(\frac{f}{g}\right)\left(x\right)=\frac{{x}^{2}+2x}{6-{x}^{2}},\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(-\infty ,-\sqrt{6}\right)\cup \left(-\sqrt{6},\sqrt{6}\right)\cup \left(\sqrt{6},\infty \right)$

Given and find $\text{\hspace{0.17em}}f+g,\text{\hspace{0.17em}}f-g,\text{\hspace{0.17em}}fg,\text{\hspace{0.17em}}$ and

Given and find and

$\left(f+g\right)\left(x\right)=\frac{4{x}^{3}+8{x}^{2}+1}{2x},\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(-\infty ,0\right)\cup \left(0,\infty \right)$

$\left(f-g\right)\left(x\right)=\frac{4{x}^{3}+8{x}^{2}-1}{2x},\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(-\infty ,0\right)\cup \left(0,\infty \right)$

$\left(fg\right)\left(x\right)=x+2,\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(-\infty ,0\right)\cup \left(0,\infty \right)$

$\left(\frac{f}{g}\right)\left(x\right)=4{x}^{3}+8{x}^{2},\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(-\infty ,0\right)\cup \left(0,\infty \right)$

Given $\text{\hspace{0.17em}}f\left(x\right)=\frac{1}{x-4}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=\frac{1}{6-x},\text{\hspace{0.17em}}$ find and

Given $\text{\hspace{0.17em}}f\left(x\right)=3{x}^{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=\sqrt{x-5},\text{\hspace{0.17em}}$ find and

$\left(f+g\right)\left(x\right)=3{x}^{2}+\sqrt{x-5},\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left[5,\infty \right)$

$\left(f-g\right)\left(x\right)=3{x}^{2}-\sqrt{x-5},\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left[5,\infty \right)$

$\left(fg\right)\left(x\right)=3{x}^{2}\sqrt{x-5},\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left[5,\infty \right)$

$\left(\frac{f}{g}\right)\left(x\right)=\frac{3{x}^{2}}{\sqrt{x-5}},\text{\hspace{0.17em}}$ domain: $\text{\hspace{0.17em}}\left(5,\infty \right)$

Given $\text{\hspace{0.17em}}f\left(x\right)=\sqrt{x}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=|x-3|,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}\frac{g}{f}.\text{\hspace{0.17em}}$

For the following exercise, find the indicated function given $\text{\hspace{0.17em}}f\left(x\right)=2{x}^{2}+1\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=3x-5.\text{\hspace{0.17em}}$

1. $f\left(g\left(2\right)\right)$
2. $f\left(g\left(x\right)\right)$
3. $g\left(f\left(x\right)\right)$
4. $\left(g\circ g\right)\left(x\right)$
5. $\left(f\circ f\right)\left(-2\right)$

a. 3; b. $\text{\hspace{0.17em}}f\left(g\left(x\right)\right)=2{\left(3x-5\right)}^{2}+1;\text{\hspace{0.17em}}$ c. $\text{\hspace{0.17em}}f\left(g\left(x\right)\right)=6{x}^{2}-2;\text{\hspace{0.17em}}$ d. $\text{\hspace{0.17em}}\left(g\circ g\right)\left(x\right)=3\left(3x-5\right)-5=9x-20;\text{\hspace{0.17em}}$ e. $\text{\hspace{0.17em}}\left(f\circ f\right)\left(-2\right)=163$

For the following exercises, use each pair of functions to find $\text{\hspace{0.17em}}f\left(g\left(x\right)\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(f\left(x\right)\right).\text{\hspace{0.17em}}$ Simplify your answers.

$f\left(x\right)={x}^{2}+1,\text{\hspace{0.17em}}g\left(x\right)=\sqrt{x+2}$

$f\left(x\right)=\sqrt{x}+2,\text{\hspace{0.17em}}g\left(x\right)={x}^{2}+3$

$f\left(g\left(x\right)\right)=\sqrt{{x}^{2}+3}+2,\text{\hspace{0.17em}}g\left(f\left(x\right)\right)=x+4\sqrt{x}+7$

$f\left(x\right)=|x|,\text{\hspace{0.17em}}g\left(x\right)=5x+1$

$f\left(x\right)=\sqrt[3]{x},\text{\hspace{0.17em}}g\left(x\right)=\frac{x+1}{{x}^{3}}$

$f\left(g\left(x\right)\right)=\sqrt[3]{\frac{x+1}{{x}^{3}}}=\frac{\sqrt[3]{x+1}}{x},\text{\hspace{0.17em}}g\left(f\left(x\right)\right)=\frac{\sqrt[3]{x}+1}{x}$

$f\left(x\right)=\frac{1}{x-6},\text{\hspace{0.17em}}g\left(x\right)=\frac{7}{x}+6$

$f\left(x\right)=\frac{1}{x-4},\text{\hspace{0.17em}}g\left(x\right)=\frac{2}{x}+4$

For the following exercises, use each set of functions to find $\text{\hspace{0.17em}}f\left(g\left(h\left(x\right)\right)\right).\text{\hspace{0.17em}}$ Simplify your answers.

$f\left(x\right)={x}^{4}+6,\text{\hspace{0.17em}}$ $g\left(x\right)=x-6,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}h\left(x\right)=\sqrt{x}$

$f\left(x\right)={x}^{2}+1,\text{\hspace{0.17em}}$ $g\left(x\right)=\frac{1}{x},\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}h\left(x\right)=x+3$

$f\left(g\left(h\left(x\right)\right)\right)={\left(\frac{1}{x+3}\right)}^{2}+1$

Given $\text{\hspace{0.17em}}f\left(x\right)=\frac{1}{x}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=x-3,\text{\hspace{0.17em}}$ find the following:

1. $\left(f\circ g\right)\left(x\right)$
2. the domain of $\text{\hspace{0.17em}}\left(f\circ g\right)\left(x\right)\text{\hspace{0.17em}}$ in interval notation
3. $\left(g\circ f\right)\left(x\right)$
4. the domain of $\text{\hspace{0.17em}}\left(g\circ f\right)\left(x\right)\text{\hspace{0.17em}}$
5. $\left(\frac{f}{g}\right)x$

Given $\text{\hspace{0.17em}}f\left(x\right)=\sqrt{2-4x}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=-\frac{3}{x},\text{\hspace{0.17em}}$ find the following:

1. $\left(g\circ f\right)\left(x\right)$
2. the domain of $\text{\hspace{0.17em}}\left(g\circ f\right)\left(x\right)\text{\hspace{0.17em}}$ in interval notation

a. $\text{\hspace{0.17em}}\left(g\circ f\right)\left(x\right)=-\frac{3}{\sqrt{2-4x}};\text{\hspace{0.17em}}$ b. $\text{\hspace{0.17em}}\left(-\infty ,\frac{1}{2}\right)$

Given the functions $\text{\hspace{0.17em}}f\left(x\right)=\frac{1-x}{x}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}\text{\hspace{0.17em}}g\left(x\right)=\frac{1}{1+{x}^{2}},$ find the following:

1. $\left(g\circ f\right)\left(x\right)$
2. $\left(g\circ f\right)\left(\text{2}\right)$

Given functions $\text{\hspace{0.17em}}p\left(x\right)=\frac{1}{\sqrt{x}}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}m\left(x\right)={x}^{2}-4,\text{\hspace{0.17em}}$ state the domain of each of the following functions using interval notation:

1. $\frac{p\left(x\right)}{m\left(x\right)}$
2. $p\left(m\left(x\right)\right)$
3. $m\left(p\left(x\right)\right)$

a. $\text{\hspace{0.17em}}\left(0,2\right)\cup \left(2,\infty \right);\text{\hspace{0.17em}}$ b. $\text{\hspace{0.17em}}\left(-\infty ,-2\right)\cup \left(2,\infty \right);\text{\hspace{0.17em}}$ c. $\text{\hspace{0.17em}}\left(0,\infty \right)$

Given functions $\text{\hspace{0.17em}}q\left(x\right)=\frac{1}{\sqrt{x}}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}h\left(x\right)={x}^{2}-9,\text{\hspace{0.17em}}$ state the domain of each of the following functions using interval notation.

1. $\frac{q\left(x\right)}{h\left(x\right)}$
2. $q\left(h\left(x\right)\right)$
3. $h\left(q\left(x\right)\right)$

For $\text{\hspace{0.17em}}f\left(x\right)=\frac{1}{x}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=\sqrt{x-1},\text{\hspace{0.17em}}$ write the domain of $\text{\hspace{0.17em}}\left(f\circ g\right)\left(x\right)\text{\hspace{0.17em}}$ in interval notation.

$\left(1,\infty \right)$

For the following exercises, find functions $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)\text{\hspace{0.17em}}$ so the given function can be expressed as $\text{\hspace{0.17em}}h\left(x\right)=f\left(g\left(x\right)\right).$

$h\left(x\right)={\left(x+2\right)}^{2}$

$h\left(x\right)={\left(x-5\right)}^{3}$

sample: $\begin{array}{l}f\left(x\right)={x}^{3}\\ g\left(x\right)=x-5\end{array}$

$h\left(x\right)=\frac{3}{x-5}$

$h\left(x\right)=\frac{4}{{\left(x+2\right)}^{2}}$

sample: $\begin{array}{l}f\left(x\right)=\frac{4}{x}\hfill \\ g\left(x\right)={\left(x+2\right)}^{2}\hfill \end{array}$

$h\left(x\right)=4+\sqrt[3]{x}$

$h\left(x\right)=\sqrt[3]{\frac{1}{2x-3}}$

sample: $\begin{array}{l}f\left(x\right)=\sqrt[3]{x}\\ g\left(x\right)=\frac{1}{2x-3}\end{array}$

$h\left(x\right)=\frac{1}{{\left(3{x}^{2}-4\right)}^{-3}}$

$h\left(x\right)=\sqrt[4]{\frac{3x-2}{x+5}}$

sample: $\begin{array}{l}f\left(x\right)=\sqrt[4]{x}\\ g\left(x\right)=\frac{3x-2}{x+5}\end{array}$

#### Questions & Answers

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
e power cos hyperbolic (x+iy)
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
why {2kπ} union {kπ}={kπ}?
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
what is complex numbers
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Solve 2cos x + 3sin x = 0.5