# 7.2 Sum and difference identities  (Page 6/6)

 Page 6 / 6

## Verbal

Explain the basis for the cofunction identities and when they apply.

The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures $\text{\hspace{0.17em}}x,$ the second angle measures $\text{\hspace{0.17em}}\frac{\pi }{2}-x.\text{\hspace{0.17em}}$ Then $\text{\hspace{0.17em}}\mathrm{sin}x=\mathrm{cos}\left(\frac{\pi }{2}-x\right).\text{\hspace{0.17em}}$ The same holds for the other cofunction identities. The key is that the angles are complementary.

Is there only one way to evaluate $\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{5\pi }{4}\right)?\text{\hspace{0.17em}}$ Explain how to set up the solution in two different ways, and then compute to make sure they give the same answer.

Explain to someone who has forgotten the even-odd properties of sinusoidal functions how the addition and subtraction formulas can determine this characteristic for $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sin}\left(x\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=\mathrm{cos}\left(x\right).\text{\hspace{0.17em}}$ (Hint: $\text{\hspace{0.17em}}0-x=-x$ )

$\mathrm{sin}\left(-x\right)=-\mathrm{sin}x,$ so $\text{\hspace{0.17em}}\mathrm{sin}x\text{\hspace{0.17em}}$ is odd. $\text{\hspace{0.17em}}\mathrm{cos}\left(-x\right)=\mathrm{cos}\left(0-x\right)=\mathrm{cos}x,$ so $\text{\hspace{0.17em}}\mathrm{cos}x\text{\hspace{0.17em}}$ is even.

## Algebraic

For the following exercises, find the exact value.

$\mathrm{cos}\left(\frac{7\pi }{12}\right)$

$\mathrm{cos}\left(\frac{\pi }{12}\right)$

$\frac{\sqrt{2}+\sqrt{6}}{4}$

$\mathrm{sin}\left(\frac{5\pi }{12}\right)$

$\mathrm{sin}\left(\frac{11\pi }{12}\right)$

$\frac{\sqrt{6}-\sqrt{2}}{4}$

$\mathrm{tan}\left(-\frac{\pi }{12}\right)$

$\mathrm{tan}\left(\frac{19\pi }{12}\right)$

$-2-\sqrt{3}$

For the following exercises, rewrite in terms of $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x.$

$\mathrm{sin}\left(x+\frac{11\pi }{6}\right)$

$\mathrm{sin}\left(x-\frac{3\pi }{4}\right)$

$-\frac{\sqrt{2}}{2}\mathrm{sin}x-\frac{\sqrt{2}}{2}\mathrm{cos}x$

$\mathrm{cos}\left(x-\frac{5\pi }{6}\right)$

$\mathrm{cos}\left(x+\frac{2\pi }{3}\right)$

$-\frac{1}{2}\mathrm{cos}x-\frac{\sqrt{3}}{2}\mathrm{sin}x$

For the following exercises, simplify the given expression.

$\mathrm{csc}\left(\frac{\pi }{2}-t\right)$

$\mathrm{sec}\left(\frac{\pi }{2}-\theta \right)$

$\mathrm{csc}\theta$

$\mathrm{cot}\left(\frac{\pi }{2}-x\right)$

$\mathrm{tan}\left(\frac{\pi }{2}-x\right)$

$\mathrm{cot}x$

$\mathrm{sin}\left(2x\right)\mathrm{cos}\left(5x\right)-\mathrm{sin}\left(5x\right)\mathrm{cos}\left(2x\right)$

$\frac{\mathrm{tan}\left(\frac{3}{2}x\right)-\mathrm{tan}\left(\frac{7}{5}x\right)}{1+\mathrm{tan}\left(\frac{3}{2}x\right)\mathrm{tan}\left(\frac{7}{5}x\right)}$

$\mathrm{tan}\left(\frac{x}{10}\right)$

For the following exercises, find the requested information.

Given that $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}a=\frac{2}{3}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}b=-\frac{1}{4},$ with $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ both in the interval $\text{\hspace{0.17em}}\left[\frac{\pi }{2},\pi \right),$ find $\text{\hspace{0.17em}}\mathrm{sin}\left(a+b\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{cos}\left(a-b\right).$

Given that $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}a=\frac{4}{5},$ and $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}b=\frac{1}{3},$ with $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ both in the interval $\text{\hspace{0.17em}}\left[0,\frac{\pi }{2}\right),$ find $\text{\hspace{0.17em}}\mathrm{sin}\left(a-b\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{cos}\left(a+b\right).$

$\mathrm{sin}\left(a-b\right)=\left(\frac{4}{5}\right)\left(\frac{1}{3}\right)-\left(\frac{3}{5}\right)\left(\frac{2\sqrt{2}}{3}\right)=\frac{4-6\sqrt{2}}{15}$
$\mathrm{cos}\left(a+b\right)=\left(\frac{3}{5}\right)\left(\frac{1}{3}\right)-\left(\frac{4}{5}\right)\left(\frac{2\sqrt{2}}{3}\right)=\frac{3-8\sqrt{2}}{15}$

For the following exercises, find the exact value of each expression.

$\mathrm{sin}\left({\mathrm{cos}}^{-1}\left(0\right)-{\mathrm{cos}}^{-1}\left(\frac{1}{2}\right)\right)$

$\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)+{\mathrm{sin}}^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$

$\frac{\sqrt{2}-\sqrt{6}}{4}$

$\mathrm{tan}\left({\mathrm{sin}}^{-1}\left(\frac{1}{2}\right)-{\mathrm{cos}}^{-1}\left(\frac{1}{2}\right)\right)$

## Graphical

For the following exercises, simplify the expression, and then graph both expressions as functions to verify the graphs are identical.

$\mathrm{cos}\left(\frac{\pi }{2}-x\right)$

$\mathrm{sin}x$

$\mathrm{sin}\left(\pi -x\right)$

$\mathrm{tan}\left(\frac{\pi }{3}+x\right)$

$\mathrm{cot}\left(\frac{\pi }{6}-x\right)$

$\mathrm{sin}\left(\frac{\pi }{3}+x\right)$

$\mathrm{tan}\left(\frac{\pi }{4}-x\right)$

$\mathrm{cot}\left(\frac{\pi }{4}+x\right)$

$\mathrm{cos}\left(\frac{7\pi }{6}+x\right)$

$\mathrm{sin}\left(\frac{\pi }{4}+x\right)$

$\frac{\mathrm{sin}x}{\sqrt{2}}+\frac{\mathrm{cos}x}{\sqrt{2}}$

$\mathrm{cos}\left(\frac{5\pi }{4}+x\right)$

For the following exercises, use a graph to determine whether the functions are the same or different. If they are the same, show why. If they are different, replace the second function with one that is identical to the first. (Hint: think $\text{\hspace{0.17em}}2x=x+x.$ )

$f\left(x\right)=\mathrm{sin}\left(4x\right)-\mathrm{sin}\left(3x\right)\mathrm{cos}\text{\hspace{0.17em}}x,g\left(x\right)=\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\left(3x\right)$

They are the same.

$f\left(x\right)=\mathrm{cos}\left(4x\right)+\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{sin}\left(3x\right),g\left(x\right)=-\mathrm{cos}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\left(3x\right)$

$f\left(x\right)=\mathrm{sin}\left(3x\right)\mathrm{cos}\left(6x\right),g\left(x\right)=-\mathrm{sin}\left(3x\right)\mathrm{cos}\left(6x\right)$

They are the different, try $\text{\hspace{0.17em}}g\left(x\right)=\mathrm{sin}\left(9x\right)-\mathrm{cos}\left(3x\right)\mathrm{sin}\left(6x\right).$

$f\left(x\right)=\mathrm{sin}\left(4x\right),g\left(x\right)=\mathrm{sin}\left(5x\right)\mathrm{cos}\text{\hspace{0.17em}}x-\mathrm{cos}\left(5x\right)\mathrm{sin}\text{\hspace{0.17em}}x$

$f\left(x\right)=\mathrm{sin}\left(2x\right),g\left(x\right)=2\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}x$

They are the same.

$f\left(\theta \right)=\mathrm{cos}\left(2\theta \right),g\left(\theta \right)={\mathrm{cos}}^{2}\theta -{\mathrm{sin}}^{2}\theta$

$f\left(\theta \right)=\mathrm{tan}\left(2\theta \right),g\left(\theta \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\theta }{1+{\mathrm{tan}}^{2}\theta }$

They are the different, try $\text{\hspace{0.17em}}g\left(\theta \right)=\frac{2\text{\hspace{0.17em}}\mathrm{tan}\theta }{1-{\mathrm{tan}}^{2}\theta }.$

$f\left(x\right)=\mathrm{sin}\left(3x\right)\mathrm{sin}\text{\hspace{0.17em}}x,g\left(x\right)={\mathrm{sin}}^{2}\left(2x\right){\mathrm{cos}}^{2}x-{\mathrm{cos}}^{2}\left(2x\right){\mathrm{sin}}^{2}x$

$f\left(x\right)=\mathrm{tan}\left(-x\right),g\left(x\right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}x-\mathrm{tan}\left(2x\right)}{1-\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{tan}\left(2x\right)}$

They are different, try $\text{\hspace{0.17em}}g\left(x\right)=\frac{\mathrm{tan}x-\mathrm{tan}\left(2x\right)}{1+\mathrm{tan}x\mathrm{tan}\left(2x\right)}.$

## Technology

For the following exercises, find the exact value algebraically, and then confirm the answer with a calculator to the fourth decimal point.

$\mathrm{sin}\left({75}^{\circ }\right)$

$\mathrm{sin}\left({195}^{\circ }\right)$

$\mathrm{cos}\left({165}^{\circ }\right)$

$\mathrm{cos}\left({345}^{\circ }\right)$

$\frac{1+\sqrt{3}}{2\sqrt{2}},$ or 0.9659

$\mathrm{tan}\left(-{15}^{\circ }\right)$

## Extensions

For the following exercises, prove the identities provided.

$\mathrm{tan}\left(x+\frac{\pi }{4}\right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}x+1}{1-\mathrm{tan}\text{\hspace{0.17em}}x}$

$\begin{array}{c}\mathrm{tan}\left(x+\frac{\pi }{4}\right)=\\ \frac{\mathrm{tan}x+\mathrm{tan}\left(\frac{\pi }{4}\right)}{1-\mathrm{tan}x\mathrm{tan}\left(\frac{\pi }{4}\right)}=\\ \frac{\mathrm{tan}x+1}{1-\mathrm{tan}x\left(1\right)}=\frac{\mathrm{tan}x+1}{1-\mathrm{tan}x}\end{array}$

$\frac{\mathrm{tan}\left(a+b\right)}{\mathrm{tan}\left(a-b\right)}=\frac{\mathrm{sin}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}a+\mathrm{sin}\text{\hspace{0.17em}}b\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}b}{\mathrm{sin}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}a-\mathrm{sin}\text{\hspace{0.17em}}b\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}b}$

$\frac{\mathrm{cos}\left(a+b\right)}{\mathrm{cos}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}b}=1-\mathrm{tan}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}b$

$\begin{array}{c}\frac{\mathrm{cos}\left(a+b\right)}{\mathrm{cos}a\mathrm{cos}b}=\\ \frac{\mathrm{cos}a\mathrm{cos}b}{\mathrm{cos}a\mathrm{cos}b}-\frac{\mathrm{sin}a\mathrm{sin}b}{\mathrm{cos}a\mathrm{cos}b}=1-\mathrm{tan}a\mathrm{tan}b\end{array}$

$\mathrm{cos}\left(x+y\right)\mathrm{cos}\left(x-y\right)={\mathrm{cos}}^{2}x-{\mathrm{sin}}^{2}y$

$\frac{\mathrm{cos}\left(x+h\right)-\mathrm{cos}\text{\hspace{0.17em}}x}{h}=\mathrm{cos}\text{\hspace{0.17em}}x\frac{\mathrm{cos}\text{\hspace{0.17em}}h-1}{h}-\mathrm{sin}\text{\hspace{0.17em}}x\frac{\mathrm{sin}\text{\hspace{0.17em}}h}{h}$

$\begin{array}{c}\frac{\mathrm{cos}\left(x+h\right)-\mathrm{cos}x}{h}=\\ \frac{\mathrm{cos}x\mathrm{cosh}-\mathrm{sin}x\mathrm{sinh}-\mathrm{cos}x}{h}=\\ \frac{\mathrm{cos}x\left(\mathrm{cosh}-1\right)-\mathrm{sin}x\mathrm{sinh}}{h}=\mathrm{cos}x\frac{\mathrm{cos}h-1}{h}-\mathrm{sin}x\frac{\mathrm{sin}h}{h}\end{array}$

For the following exercises, prove or disprove the statements.

$\mathrm{tan}\left(u+v\right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}u+\mathrm{tan}\text{\hspace{0.17em}}v}{1-\mathrm{tan}\text{\hspace{0.17em}}u\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}v}$

$\mathrm{tan}\left(u-v\right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}u-\mathrm{tan}\text{\hspace{0.17em}}v}{1+\mathrm{tan}\text{\hspace{0.17em}}u\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}v}$

True

$\frac{\mathrm{tan}\left(x+y\right)}{1+\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x}=\frac{\mathrm{tan}\text{\hspace{0.17em}}x+\mathrm{tan}\text{\hspace{0.17em}}y}{1-{\mathrm{tan}}^{2}x\text{\hspace{0.17em}}{\mathrm{tan}}^{2}y}$

If $\text{\hspace{0.17em}}\alpha ,\beta ,$ and $\text{\hspace{0.17em}}\gamma \text{\hspace{0.17em}}$ are angles in the same triangle, then prove or disprove $\text{\hspace{0.17em}}\mathrm{sin}\left(\alpha +\beta \right)=\mathrm{sin}\text{\hspace{0.17em}}\gamma .$

True. Note that $\text{\hspace{0.17em}}\mathrm{sin}\left(\alpha +\beta \right)=\mathrm{sin}\left(\pi -\gamma \right)\text{\hspace{0.17em}}$ and expand the right hand side.

If $\text{\hspace{0.17em}}\alpha ,\beta ,$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ are angles in the same triangle, then prove or disprove $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha +\mathrm{tan}\text{\hspace{0.17em}}\beta +\mathrm{tan}\text{\hspace{0.17em}}\gamma =\mathrm{tan}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta \text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\gamma$

how can are find the domain and range of a relations
A cell phone company offers two plans for minutes. Plan A: $15 per month and$2 for every 300 texts. Plan B: $25 per month and$0.50 for every 100 texts. How many texts would you need to send per month for plan B to save you money?
6000
Robert
more than 6000
Robert
can I see the picture
How would you find if a radical function is one to one?
how to understand calculus?
with doing calculus
SLIMANE
Thanks po.
Jenica
Hey I am new to precalculus, and wanted clarification please on what sine is as I am floored by the terms in this app? I don't mean to sound stupid but I have only completed up to college algebra.
I don't know if you are looking for a deeper answer or not, but the sine of an angle in a right triangle is the length of the opposite side to the angle in question divided by the length of the hypotenuse of said triangle.
Marco
can you give me sir tips to quickly understand precalculus. Im new too in that topic. Thanks
Jenica
if you remember sine, cosine, and tangent from geometry, all the relationships are the same but they use x y and r instead (x is adjacent, y is opposite, and r is hypotenuse).
Natalie
it is better to use unit circle than triangle .triangle is only used for acute angles but you can begin with. Download any application named"unit circle" you find in it all you need. unit circle is a circle centred at origine (0;0) with radius r= 1.
SLIMANE
What is domain
johnphilip
the standard equation of the ellipse that has vertices (0,-4)&(0,4) and foci (0, -15)&(0,15) it's standard equation is x^2 + y^2/16 =1 tell my why is it only x^2? why is there no a^2?
what is foci?
This term is plural for a focus, it is used for conic sections. For more detail or other math questions. I recommend researching on "Khan academy" or watching "The Organic Chemistry Tutor" YouTube channel.
Chris
how to determine the vertex,focus,directrix and axis of symmetry of the parabola by equations
i want to sure my answer of the exercise
what is the diameter of(x-2)²+(y-3)²=25
how to solve the Identity ?
what type of identity
Jeffrey
Confunction Identity
Barcenas
how to solve the sums
meena
hello guys
meena
For each year t, the population of a forest of trees is represented by the function A(t) = 117(1.029)t. In a neighboring forest, the population of the same type of tree is represented by the function B(t) = 86(1.025)t.
by how many trees did forest "A" have a greater number?
Shakeena
32.243
Kenard
how solve standard form of polar
what is a complex number used for?
It's just like any other number. The important thing to know is that they exist and can be used in computations like any number.
Steve
I would like to add that they are used in AC signal analysis for one thing
Scott
Good call Scott. Also radar signals I believe.
Steve
They are used in any profession where the phase of a waveform has to be accounted for in the calculations. Imagine two electrical signals in a wire that are out of phase by 90°. At some times they will interfere constructively, others destructively. Complex numbers simplify those equations
Tim