<< Chapter < Page Chapter >> Page >

Using synthetic division to divide a second-degree polynomial

Use synthetic division to divide 5 x 2 3 x 36 by x 3.

Begin by setting up the synthetic division. Write k and the coefficients.

A collapsed version of the previous synthetic division.

Bring down the lead coefficient. Multiply the lead coefficient by k .

The set-up of the synthetic division for the polynomial 5x^2-3x-36 by x-3, which renders {5, -3, -36} by 3.

Continue by adding the numbers in the second column. Multiply the resulting number by k . Write the result in the next column. Then add the numbers in the third column.

Multiplied by the lead coefficient, 5, in the second column, and the lead coefficient is brought down to the second row.

The result is 5 x + 12. The remainder is 0. So x 3 is a factor of the original polynomial.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using synthetic division to divide a third-degree polynomial

Use synthetic division to divide 4 x 3 + 10 x 2 6 x 20 by x + 2.

The binomial divisor is x + 2 so k = −2. Add each column, multiply the result by –2, and repeat until the last column is reached.

Synthetic division of 4x^3+10x^2-6x-20 divided by x+2.

The result is 4 x 2 + 2 x 10. The remainder is 0. Thus, x + 2 is a factor of 4 x 3 + 10 x 2 6 x 20.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using synthetic division to divide a fourth-degree polynomial

Use synthetic division to divide 9 x 4 + 10 x 3 + 7 x 2 6 by x 1.

Notice there is no x -term. We will use a zero as the coefficient for that term.

..

The result is 9 x 3 + x 2 + 8 x + 8 + 2 x 1 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use synthetic division to divide 3 x 4 + 18 x 3 3 x + 40 by x + 7.

3 x 3 3 x 2 + 21 x 150 + 1 , 090 x + 7

Got questions? Get instant answers now!

Using polynomial division to solve application problems

Polynomial division can be used to solve a variety of application problems involving expressions for area and volume. We looked at an application at the beginning of this section. Now we will solve that problem in the following example.

Using polynomial division in an application problem

The volume of a rectangular solid is given by the polynomial 3 x 4 3 x 3 33 x 2 + 54 x . The length of the solid is given by 3 x and the width is given by x 2. Find the height, t , of the solid.

There are a few ways to approach this problem. We need to divide the expression for the volume of the solid by the expressions for the length and width. Let us create a sketch as in [link] .

Graph of f(x)=4x^3+10x^2-6x-20 with a close up on x+2.

We can now write an equation by substituting the known values into the formula for the volume of a rectangular solid.

V = l w h 3 x 4 3 x 3 33 x 2 + 54 x = 3 x ( x 2 ) h

To solve for h , first divide both sides by 3 x .

3 x ( x 2 ) h 3 x = 3 x 4 3 x 3 33 x 2 + 54 x 3 x ( x 2 ) h = x 3 x 2 11 x + 18

Now solve for h using synthetic division.

h = x 3 x 2 11 x + 18 x 2

The quotient is x 2 + x 9 and the remainder is 0. The height of the solid is x 2 + x 9.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

The area of a rectangle is given by 3 x 3 + 14 x 2 23 x + 6. The width of the rectangle is given by x + 6. Find an expression for the length of the rectangle.

3 x 2 4 x + 1

Got questions? Get instant answers now!

Key equations

Division Algorithm f ( x ) = d ( x ) q ( x ) + r ( x )  where  q ( x ) 0

Key concepts

  • Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower degree. See [link] and [link] .
  • The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor and the quotient added to the remainder.
  • Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form x k . See [link] , [link] , and [link] .
  • Polynomial division can be used to solve application problems, including area and volume. See [link] .

Questions & Answers

prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
madras university algebra questions papers first year B. SC. maths
Kanniyappan Reply
Hey
Rightspect
hi
chesky
Give me algebra questions
Rightspect
how to send you
Vandna
What does this mean
Michael Reply
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
rajan Reply
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
is there any case that you can have a polynomials with a degree of four?
victor
***sscc.edu/home/jdavidso/math/catalog/polynomials/fourth/fourth.html
Oliver
can you solve it step b step
Ching Reply
give me some important question in tregnamentry
Anshuman
what is linear equation with one unknown 2x+5=3
Joan Reply
-4
Joel
x=-4
Joel
x=-1
Joan
I was wrong. I didn't move all constants to the right of the equation.
Joel
x=-1
Cristian
Adityasuman x= - 1
Aditya
y=x+1
gary
what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
Shadow Reply
can I get help with this?
Wayne
Are they two separate problems or are the two functions a system?
Wilson
Also, is the first x squared in "x+4x+4"
Wilson
x^2+4x+4?
Wilson
thank you
Wilson
Please see ***imgur.com/a/lpTpDZk for solutions
Wilson
f(x)=x square-root 2 +2x+1 how to solve this value
Marjun Reply
factor or use quadratic formula
Wilson
what is algebra
Ige Reply
The product of two is 32. Find a function that represents the sum of their squares.
Paul
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
Martin Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask