# 7.6 Solving systems with gaussian elimination  (Page 2/13)

 Page 2 / 13

## Writing a system of equations from an augmented matrix form

Find the system of equations from the augmented matrix.

When the columns represent the variables $\text{\hspace{0.17em}}x,\text{\hspace{0.17em}}$ $y,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z,$

Write the system of equations from the augmented matrix.

$\left[\begin{array}{ccc}1& -1& \text{\hspace{0.17em}}\text{\hspace{0.17em}}1\\ 2& -1& \text{\hspace{0.17em}}\text{\hspace{0.17em}}3\\ 0& \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}1& \text{\hspace{0.17em}}\text{\hspace{0.17em}}1\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{c}\text{\hspace{0.17em}}\text{\hspace{0.17em}}5\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}1\\ -9\end{array}\right]$

$\begin{array}{c}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z=5\\ 2x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}\text{\hspace{0.17em}}3z=1\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z=-9\end{array}$

## Performing row operations on a matrix

Now that we can write systems of equations in augmented matrix form, we will examine the various row operations    that can be performed on a matrix, such as addition, multiplication by a constant, and interchanging rows.

Performing row operations on a matrix is the method we use for solving a system of equations. In order to solve the system of equations, we want to convert the matrix to row-echelon form    , in which there are ones down the main diagonal    from the upper left corner to the lower right corner, and zeros in every position below the main diagonal as shown.

We use row operations corresponding to equation operations to obtain a new matrix that is row-equivalent    in a simpler form. Here are the guidelines to obtaining row-echelon form.

1. In any nonzero row, the first nonzero number is a 1. It is called a leading 1.
2. Any all-zero rows are placed at the bottom on the matrix.
3. Any leading 1 is below and to the right of a previous leading 1.
4. Any column containing a leading 1 has zeros in all other positions in the column.

To solve a system of equations we can perform the following row operations to convert the coefficient matrix    to row-echelon form and do back-substitution to find the solution.

1. Interchange rows. (Notation: $\text{\hspace{0.17em}}{R}_{i}\text{\hspace{0.17em}}↔\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}_{j}$ )
2. Multiply a row by a constant. (Notation: $\text{\hspace{0.17em}}c{R}_{i}$ )
3. Add the product of a row multiplied by a constant to another row. (Notation: $\text{\hspace{0.17em}}{R}_{i}+c{R}_{j}\right)$

Each of the row operations corresponds to the operations we have already learned to solve systems of equations in three variables. With these operations, there are some key moves that will quickly achieve the goal of writing a matrix in row-echelon form. To obtain a matrix in row-echelon form for finding solutions, we use Gaussian elimination, a method that uses row operations to obtain a 1 as the first entry so that row 1 can be used to convert the remaining rows.

## Gaussian elimination

The Gaussian elimination    method refers to a strategy used to obtain the row-echelon form of a matrix. The goal is to write matrix $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ with the number 1 as the entry down the main diagonal and have all zeros below.

The first step of the Gaussian strategy includes obtaining a 1 as the first entry, so that row 1 may be used to alter the rows below.

Given an augmented matrix, perform row operations to achieve row-echelon form.

1. The first equation should have a leading coefficient of 1. Interchange rows or multiply by a constant, if necessary.
2. Use row operations to obtain zeros down the first column below the first entry of 1.
3. Use row operations to obtain a 1 in row 2, column 2.
4. Use row operations to obtain zeros down column 2, below the entry of 1.
5. Use row operations to obtain a 1 in row 3, column 3.
6. Continue this process for all rows until there is a 1 in every entry down the main diagonal and there are only zeros below.
7. If any rows contain all zeros, place them at the bottom.

find the 15th term of the geometric sequince whose first is 18 and last term of 387
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y