<< Chapter < Page Chapter >> Page >

Rewrite the 13 x 2 6 3 x y + 7 y 2 = 16 in the x y system without the x y term.

x 2 4 + y 2 1 = 1

Got questions? Get instant answers now!

Graphing an equation that has no x′y′ Terms

Graph the following equation relative to the x y system:

x 2 + 12 x y 4 y 2 = 30

First, we find cot ( 2 θ ) .

x 2 + 12 x y 4 y 2 = 20 A = 1 ,   B = 12 , and  C = −4
cot ( 2 θ ) = A C B cot ( 2 θ ) = 1 ( −4 ) 12 cot ( 2 θ ) = 5 12

Because cot ( 2 θ ) = 5 12 , we can draw a reference triangle as in [link] .

cot ( 2 θ ) = 5 12 = adjacent opposite

Thus, the hypotenuse is

5 2 + 12 2 = h 2 25 + 144 = h 2 169 = h 2 h = 13

Next, we find sin   θ and cos   θ . We will use half-angle identities.

sin   θ = 1 cos ( 2 θ ) 2 = 1 5 13 2 = 13 13 5 13 2 = 8 13 1 2 = 2 13 cos   θ = 1 + cos ( 2 θ ) 2 = 1 + 5 13 2 = 13 13 + 5 13 2 = 18 13 1 2 = 3 13

Now we find x and y . 

x = x cos   θ y sin   θ x = x ( 3 13 ) y ( 2 13 ) x = 3 x 2 y 13

and

y = x sin   θ + y cos   θ y = x ( 2 13 ) + y ( 3 13 ) y = 2 x + 3 y 13

Now we substitute x = 3 x 2 y 13 and y = 2 x + 3 y 13 into x 2 + 12 x y 4 y 2 = 30.

                                         ( 3 x 2 y 13 ) 2 + 12 ( 3 x 2 y 13 ) ( 2 x + 3 y 13 ) 4 ( 2 x + 3 y 13 ) 2 = 30                                    ( 1 13 ) [ ( 3 x 2 y ) 2 + 12 ( 3 x 2 y ) ( 2 x + 3 y ) 4 ( 2 x + 3 y ) 2 ] = 30   Factor . ( 1 13 ) [ 9 x 2 12 x y + 4 y 2 + 12 ( 6 x 2 + 5 x y 6 y 2 ) 4 ( 4 x 2 + 12 x y + 9 y 2 ) ] = 30 Multiply .    ( 1 13 ) [ 9 x 2 12 x y + 4 y 2 + 72 x 2 + 60 x y 72 y 2 16 x 2 48 x y 36 y 2 ] = 30 Distribute .                                                                                                    ( 1 13 ) [ 65 x 2 104 y 2 ] = 30 Combine like terms .                                                                                                             65 x 2 104 y 2 = 390 Multiply .                                                                                                                                     x 2 6 4 y 2 15 = 1   Divide by 390 .

[link] shows the graph of the hyperbola x 2 6 4 y 2 15 = 1.       

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Identifying conics without rotating axes

Now we have come full circle. How do we identify the type of conic described by an equation? What happens when the axes are rotated? Recall, the general form of a conic is

A x 2 + B x y + C y 2 + D x + E y + F = 0

If we apply the rotation formulas to this equation we get the form

A x 2 + B x y + C y 2 + D x + E y + F = 0

It may be shown that B 2 4 A C = B 2 4 A C . The expression does not vary after rotation, so we call the expression invariant . The discriminant, B 2 4 A C , is invariant and remains unchanged after rotation. Because the discriminant remains unchanged, observing the discriminant enables us to identify the conic section.

Using the discriminant to identify a conic

If the equation A x 2 + B x y + C y 2 + D x + E y + F = 0 is transformed by rotating axes into the equation A x 2 + B x y + C y 2 + D x + E y + F = 0 , then B 2 4 A C = B 2 4 A C .

The equation A x 2 + B x y + C y 2 + D x + E y + F = 0 is an ellipse, a parabola, or a hyperbola, or a degenerate case of one of these.

If the discriminant, B 2 4 A C , is

  • < 0 , the conic section is an ellipse
  • = 0 , the conic section is a parabola
  • > 0 , the conic section is a hyperbola

Identifying the conic without rotating axes

Identify the conic for each of the following without rotating axes.

  1. 5 x 2 + 2 3 x y + 2 y 2 5 = 0
  2. 5 x 2 + 2 3 x y + 12 y 2 5 = 0
  1. Let’s begin by determining A , B , and C .
    5 A x 2 + 2 3 B x y + 2 C y 2 5 = 0

    Now, we find the discriminant.

    B 2 4 A C = ( 2 3 ) 2 4 ( 5 ) ( 2 )                  = 4 ( 3 ) 40                  = 12 40                  = 28 < 0

    Therefore, 5 x 2 + 2 3 x y + 2 y 2 5 = 0 represents an ellipse.

  2. Again, let’s begin by determining A , B , and C .
    5 A x 2 + 2 3 B x y + 12 C y 2 5 = 0

    Now, we find the discriminant.

    B 2 4 A C = ( 2 3 ) 2 4 ( 5 ) ( 12 )                  = 4 ( 3 ) 240                  = 12 240                  = 228 < 0

    Therefore, 5 x 2 + 2 3 x y + 12 y 2 5 = 0 represents an ellipse.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
Payal Reply
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
Please you teach
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask