<< Chapter < Page Chapter >> Page >

For the following exercises, write the first four terms of the sequence.

a n = n ! n 2

First four terms: 1 , 1 2 , 2 3 , 3 2

Got questions? Get instant answers now!

a n = 3 n ! 4 n !

Got questions? Get instant answers now!

a n = n ! n 2 n 1

First four terms: 1 , 2 , 6 5 , 24 11

Got questions? Get instant answers now!

a n = 100 n n ( n 1 ) !

Got questions? Get instant answers now!

Graphical

For the following exercises, graph the first five terms of the indicated sequence

a n = { 4 + n 2 n if  n  is even 3 + n if  n  is odd

Got questions? Get instant answers now!

a 1 = 2 ,   a n = ( a n 1 + 1 ) 2

Graph of a scattered plot with points at (1, 2), (2, 1), (3, 0), (4, 1), and (5, 0). The x-axis is labeled n and the y-axis is labeled a_n.
Got questions? Get instant answers now!

a n = 1 ,   a n = a n 1 + 8

Got questions? Get instant answers now!

a n = ( n + 1 ) ! ( n 1 ) !

Graph of a scattered plot with labeled points: (1, 2), (2, 6), (3, 12), (4, 20), and (5, 30). The x-axis is labeled n and the y-axis is labeled a_n.
Got questions? Get instant answers now!

For the following exercises, write an explicit formula for the sequence using the first five points shown on the graph.

For the following exercises, write a recursive formula for the sequence using the first five points shown on the graph.

Graph of a scattered plot with labeled points: (1, 6), (2, 7), (3, 9), (4, 13), and (5, 21). The x-axis is labeled n and the y-axis is labeled a_n.

a 1 = 6 ,   a n = 2 a n 1 5

Got questions? Get instant answers now!

Technology

Follow these steps to evaluate a sequence defined recursively using a graphing calculator:

  • On the home screen, key in the value for the initial term a 1 and press [ENTER] .
  • Enter the recursive formula by keying in all numerical values given in the formula, along with the key strokes [2ND] ANS for the previous term a n 1 . Press [ENTER] .
  • Continue pressing [ENTER] to calculate the values for each successive term.

For the following exercises, use the steps above to find the indicated term or terms for the sequence.

Find the first five terms of the sequence a 1 = 87 111 ,   a n = 4 3 a n 1 + 12 37 . Use the> Frac feature to give fractional results.

First five terms: 29 37 , 152 111 , 716 333 , 3188 999 , 13724 2997

Got questions? Get instant answers now!

Find the 15 th term of the sequence a 1 = 625 ,   a n = 0.8 a n 1 + 18.

Got questions? Get instant answers now!

Find the first five terms of the sequence a 1 = 2 ,   a n = 2 [ ( a n 1 ) 1 ] + 1.

First five terms: 2 , 3 , 5 , 17 , 65537

Got questions? Get instant answers now!

Find the first ten terms of the sequence a 1 = 8 ,   a n = ( a n 1 + 1 ) ! a n 1 ! .

Got questions? Get instant answers now!

Find the tenth term of the sequence a 1 = 2 ,   a n = n a n 1

a 10 = 7 , 257 , 600

Got questions? Get instant answers now!

Follow these steps to evaluate a finite sequence defined by an explicit formula. Using a TI-84, do the following.

  • In the home screen, press [2ND] LIST .
  • Scroll over to OPS and choose “seq(” from the dropdown list. Press [ENTER] .
  • In the line headed “Expr:” type in the explicit formula, using the [ X,T , θ , n ] button for n
  • In the line headed “Variable:” type in the variable used on the previous step.
  • In the line headed “start:” key in the value of n that begins the sequence.
  • In the line headed “end:” key in the value of n that ends the sequence.
  • Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms.

Using a TI-83, do the following.

  • In the home screen, press [2ND] LIST .
  • Scroll over to OPS and choose “seq(” from the dropdown list. Press [ENTER] .
  • Enter the items in the order “Expr” , “Variable” , “start” , “end” separated by commas. See the instructions above for the description of each item.
  • Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms.

For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest thousandth when necessary.

List the first five terms of the sequence a n = 28 9 n + 5 3 .

Got questions? Get instant answers now!

List the first six terms of the sequence a n = n 3 3.5 n 2 +   4.1 n 1.5 2.4 n .

First six terms: 0.042 , 0.146 , 0.875 , 2.385 , 4.708

Got questions? Get instant answers now!

List the first five terms of the sequence a n = 15 n ( 2 ) n 1 47

Got questions? Get instant answers now!

List the first four terms of the sequence a n = 5.7 n + 0.275 ( n 1 ) !

First four terms: 5.975 , 32.765 , 185.743 , 1057.25 , 6023.521

Got questions? Get instant answers now!

List the first six terms of the sequence a n = n ! n .

Got questions? Get instant answers now!

Extensions

Consider the sequence defined by a n = 6 8 n . Is a n = 421 a term in the sequence? Verify the result.

If a n = 421 is a term in the sequence, then solving the equation 421 = 6 8 n for n will yield a non-negative integer. However, if 421 = 6 8 n , then n = 51.875 so a n = 421 is not a term in the sequence.

Got questions? Get instant answers now!

What term in the sequence a n = n 2 + 4 n + 4 2 ( n + 2 ) has the value 41 ? Verify the result.

Got questions? Get instant answers now!

Find a recursive formula for the sequence 1 ,   0 ,   1 ,   1 ,   0 ,   1 ,   1 ,   0 ,   1 ,   1 ,   0 ,   1 ,   1 ,   ...   . ( Hint : find a pattern for a n based on the first two terms.)

a 1 = 1 , a 2 = 0 , a n = a n 1 a n 2

Got questions? Get instant answers now!

Calculate the first eight terms of the sequences a n = ( n + 2 ) ! ( n 1 ) ! and b n = n 3 + 3 n 2 + 2 n , and then make a conjecture about the relationship between these two sequences.

Got questions? Get instant answers now!

Prove the conjecture made in the preceding exercise.

( n + 2 ) ! ( n 1 ) ! = ( n + 2 ) · ( n + 1 ) · ( n ) · ( n 1 ) · ... · 3 · 2 · 1 ( n 1 ) · ... · 3 · 2 · 1 = n ( n + 1 ) ( n + 2 ) = n 3 + 3 n 2 + 2 n

Got questions? Get instant answers now!

Questions & Answers

12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Practice Key Terms 8

Get the best College algebra course in your pocket!





Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask