<< Chapter < Page Chapter >> Page >

A more complex interaction between a dummy variable and the dependent variable can also be estimated. It may be that the dummy variable has more than a simple shift effect on the dependent variable, but also interacts with one or more of the other continuous independent variables. While not tested in the example above, it could be hypothesized that the impact of gender on salary was not a one-time shift, but impacted the value of additional years of experience on salary also. That is, female school teacher’s salaries were discounted at the start, and further did not grow at the same rate as male school teachers. This would show up as a different slope for the relationship between total years of experience for males than for females. If this is so then females school teachers would not just start behind their male colleagues (as measured by the shift in the estimated regression line), but would fall further and further behind as time and experienced increased.

The graph below shows how this hypothesis can be tested with the use of dummy variables and an interaction variable.


The estimating equation shows how the slope of X 1 , the continuous random variable experience, contains two parts, b 1 and b 3 . This occurs because of the new variable X 1 X 2 , called the interaction variable, was created to allow for an effect on the slope of X 1 from changes in X 2 , the binary dummy variable. Note that when the dummy variable, X 2 = 0 the interaction variable has a value of 0, but when X 2 = 1 the interaction variable has a value of X 1 . The coefficient b 3 is an estimate of the difference in the coefficient of X 1 when X 2 = 1 compared to when X 2 = 0. In the example of teacher’s salaries, if there is a premium paid to male teachers that affects the rate of increase in salaries from experience, then the rate at which male teachers’ salaries rises would be b 1 + b 3 and the rate at which female teachers’ salaries rise would be simply b 1 . This hypothesis can be tested with the hypothesis:

H 0 : β 3 = 0 | β 1 = 0 , β 2 = 0
H a : β 3 0 | β 1 0 , β 2 0

This is a t-test using the test statistic for the parameter β 3 . If we cannot accept the null hypothesis that β 3 =0 we conclude there is a difference between the rate of increase for the group for whom the value of the binary variable is set to 1, males in this example. This estimating equation can be combined with our earlier one that tested only a parallel shift in the estimated line. The earnings/experience functions in [link] are drawn for this case with a shift in the earnings function and a difference in the slope of the function with respect to total years of experience.

A random sample of 11 statistics students produced the following data, where x is the third exam score out of 80, and y is the final exam score out of 200. Can you predict the final exam score of a randomly selected student if you know the third exam score?

x (third exam score) y (final exam score)
65 175
67 133
71 185
71 163
66 126
75 198
67 153
70 163
71 159
69 151
69 159
Table showing the scores on the final exam based on scores from the third exam.
This is a scatter plot of the data provided. The third exam score is plotted on the x-axis, and the final exam score is plotted on the y-axis. The points form a strong, positive, linear pattern.
Scatter plot showing the scores on the final exam based on scores from the third exam.

Chapter review

It is hoped that this discussion of regression analysis has demonstrated the tremendous potential value it has as a tool for testing models and helping to better understand the world around us. The regression model has its limitations, especially the requirement that the underlying relationship be approximately linear. To the extent that the true relationship is nonlinear it may be approximated with a linear relationship or nonlinear forms of transformations that can be estimated with linear techniques. Double logarithmic transformation of the data will provide an easy way to test this particular shape of the relationship. A reasonably good quadratic form (the shape of the total cost curve from Microeconomics Principles) can be generated by the equation:

Y = a + b 1 X + b 2 X 2

where the values of X are simply squared and put into the equation as a separate variable.

There is much more in the way of econometric "tricks" that can bypass some of the more troublesome assumptions of the general regression model. This statistical technique is so valuable that further study would provide any student significant, statistically significant, dividends.

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Introductory statistics. OpenStax CNX. Aug 09, 2016 Download for free at http://legacy.cnx.org/content/col11776/1.26
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?