<< Chapter < Page Chapter >> Page >

Class Time:

Names:

    Student learning outcomes

  • The student will demonstrate and compare properties of the central limit theorem.

Given

X = length of time (in days) that a cookie recipe lasted at the Olmstead Homestead. (Assume that each of the different recipes makes the same quantity of cookies.)

Recipe # X Recipe # X Recipe # X Recipe # X
1 1 16 2 31 3 46 2
2 5 17 2 32 4 47 2
3 2 18 4 33 5 48 11
4 5 19 6 34 6 49 5
5 6 20 1 35 6 50 5
6 1 21 6 36 1 51 4
7 2 22 5 37 1 52 6
8 6 23 2 38 2 53 5
9 5 24 5 39 1 54 1
10 2 25 1 40 6 55 1
11 5 26 6 41 1 56 2
12 1 27 4 42 6 57 4
13 1 28 1 43 2 58 3
14 3 29 6 44 6 59 6
15 2 30 2 45 2 60 5

Calculate the following:

  1. μ x = _______
  2. σ x = _______

Collect the data

Use a random number generator to randomly select four samples of size n = 5 from the given population. Record your samples in [link] . Then, for each sample, calculate the mean to the nearest tenth. Record them in the spaces provided. Record the sample means for the rest of the class.

  1. Complete the table:
    Sample 1 Sample 2 Sample 3 Sample 4 Sample means from other groups:
    Means: x ¯ = ____ x ¯ = ____ x ¯ = ____ x ¯ = ____
  2. Calculate the following:
    1. x ¯ = _______
    2. s x ¯ = _______
  3. Again, use a random number generator to randomly select four samples from the population. This time, make the samples of size n = 10. Record the samples in [link] . As before, for each sample, calculate the mean to the nearest tenth. Record them in the spaces provided. Record the sample means for the rest of the class.
    Sample 1 Sample 2 Sample 3 Sample 4 Sample means from other groups
    Means: x ¯ = ____ x ¯ = ____ x ¯ = ____ x ¯ = ____
  4. Calculate the following:
    1. x ¯ = ______
    2. s x ¯ = ______
  5. For the original population, construct a histogram. Make intervals with a bar width of one day. Sketch the graph using a ruler and pencil. Scale the axes.
    This is a blank graph template. The horizontal axis is labeled Time (days) and the vertical axis is labeled Frequency.
  6. Draw a smooth curve through the tops of the bars of the histogram. Use one to two complete sentences to describe the general shape of the curve.

    Repeat the procedure for n = 5

  1. For the sample of n = 5 days averaged together, construct a histogram of the averages (your means together with the means of the other groups). Make intervals with bar widths of 1 2 a day. Sketch the graph using a ruler and pencil. Scale the axes.
    This is a blank graph template. The horizontal axis is labeled Time (days) and the vertical axis is labeled Frequency.
  2. Draw a smooth curve through the tops of the bars of the histogram. Use one to two complete sentences to describe the general shape of the curve.

    Repeat the procedure for n = 10

  1. For the sample of n = 10 days averaged together, construct a histogram of the averages (your means together with the means of the other groups). Make intervals with bar widths of 1 2 a day. Sketch the graph using a ruler and pencil. Scale the axes.
    This is a blank graph template. The horizontal axis is labeled Time (days) and the vertical axis is labeled Frequency.
  2. Draw a smooth curve through the tops of the bars of the histogram. Use one to two complete sentences to describe the general shape of the curve.

    Discussion questions

  1. Compare the three histograms you have made, the one for the population and the two for the sample means. In three to five sentences, describe the similarities and differences.
  2. State the theoretical (according to the clt) distributions for the sample means.
    1. n = 5: x ¯ ~ _____(_____,_____)
    2. n = 10: x ¯ ~ _____(_____,_____)
  3. Are the sample means for n = 5 and n = 10 “close” to the theoretical mean, μ x ? Explain why or why not.
  4. Which of the two distributions of sample means has the smaller standard deviation? Why?
  5. As n changed, why did the shape of the distribution of the data change? Use one to two complete sentences to explain what happened.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask