<< Chapter < Page Chapter >> Page >

Continuous distribution

Class Time:

Names:

    Student learning outcomes

  • The student will compare and contrast empirical data from a random number generator with the uniform distribution.

Collect the data

Use a random number generator to generate 50 values between zero and one (inclusive). List them in [link] . Round the numbers to four decimal places or set the calculator MODE to four places.

  1. Complete the table.
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
  2. Calculate the following:
    1. x ¯ = _______
    2. s = _______
    3. first quartile = _______
    4. third quartile = _______
    5. median = _______

    Organize the data

  1. Construct a histogram of the empirical data. Make eight bars.
    Blank graph with relative frequency on the vertical axis and X on the horizontal axis.
  2. Construct a histogram of the empirical data. Make five bars.
    Blank graph with relative frequency on the vertical axis and X on the horizontal axis.

    Describe the data

  1. In two to three complete sentences, describe the shape of each graph. (Keep it simple. Does the graph go straight across, does it have a V shape, does it have a hump in the middle or at either end, and so on. One way to help you determine a shape is to draw a smooth curve roughly through the top of the bars.)
  2. Describe how changing the number of bars might change the shape.

    Theoretical distribution

  1. In words, X = _____________________________________.
  2. The theoretical distribution of X is X ~ U (0,1).
  3. In theory, based upon the distribution X ~ U (0,1), complete the following.
    1. μ = ______
    2. σ = ______
    3. first quartile = ______
    4. third quartile = ______
    5. median = __________
  4. Are the empirical values (the data) in the section titled Collect the Data close to the corresponding theoretical values? Why or why not?

    Plot the data

  1. Construct a box plot of the data. Be sure to use a ruler to scale accurately and draw straight edges.
  2. Do you notice any potential outliers? If so, which values are they? Either way, justify your answer numerically. (Recall that any DATA that are less than Q 1 – 1.5( IQR ) or more than Q 3 + 1.5( IQR ) are potential outliers. IQR means interquartile range.)

    Compare the data

  1. For each of the following parts, use a complete sentence to comment on how the value obtained from the data compares to the theoretical value you expected from the distribution in the section titled Theoretical Distribution .
    1. minimum value: _______
    2. first quartile: _______
    3. median: _______
    4. third quartile: _______
    5. maximum value: _______
    6. width of IQR : _______
    7. overall shape: _______
  2. Based on your comments in the section titled Collect the Data , how does the box plot fit or not fit what you would expect of the distribution in the section titled Theoretical Distribution ?

    Discussion question

  1. Suppose that the number of values generated was 500, not 50. How would that affect what you would expect the empirical data to be and the shape of its graph to look like?

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask