# 11.6 Test of a single variance

 Page 1 / 22

A test of a single variance assumes that the underlying distribution is normal . The null and alternative hypotheses are stated in terms of the population variance (or population standard deviation). The test statistic is:

$\frac{\left(n-1\right){s}^{2}}{{\sigma }^{2}}$

where:

• n = the total number of data
• s 2 = sample variance
• σ 2 = population variance

You may think of s as the random variable in this test. The number of degrees of freedom is df = n - 1. A test of a single variance may be right-tailed, left-tailed, or two-tailed. [link] will show you how to set up the null and alternative hypotheses. The null and alternative hypotheses contain statements about the population variance.

Math instructors are not only interested in how their students do on exams, on average, but how the exam scores vary. To many instructors, the variance (or standard deviation) may be more important than the average.

Suppose a math instructor believes that the standard deviation for his final exam is five points. One of his best students thinks otherwise. The student claims that the standard deviation is more than five points. If the student were to conduct a hypothesis test, what would the null and alternative hypotheses be?

Even though we are given the population standard deviation, we can set up the test using the population variance as follows.

• H 0 : σ 2 = 5 2
• H a : σ 2 >5 2

## Try it

A SCUBA instructor wants to record the collective depths each of his students dives during their checkout. He is interested in how the depths vary, even though everyone should have been at the same depth. He believes the standard deviation is three feet. His assistant thinks the standard deviation is less than three feet. If the instructor were to conduct a test, what would the null and alternative hypotheses be?

H 0 : σ 2 = 3 2

H a : σ 2 <3 2

With individual lines at its various windows, a post office finds that the standard deviation for normally distributed waiting times for customers on Friday afternoon is 7.2 minutes. The post office experiments with a single, main waiting line and finds that for a random sample of 25 customers, the waiting times for customers have a standard deviation of 3.5 minutes.

With a significance level of 5%, test the claim that a single line causes lower variation among waiting times (shorter waiting times) for customers .

Since the claim is that a single line causes less variation, this is a test of a single variance. The parameter is the population variance, σ 2 , or the population standard deviation, σ .

Random Variable: The sample standard deviation, s , is the random variable. Let s = standard deviation for the waiting times.

• H 0 : σ 2 = 7.2 2
• H a : σ 2 <7.2 2

The word "less" tells you this is a left-tailed test.

Distribution for the test: ${\chi }_{24}^{2}$ , where:

• n = the number of customers sampled
• df = n – 1 = 25 – 1 = 24

Calculate the test statistic:

where n = 25, s = 3.5, and σ = 7.2.

Graph:

Probability statement: p -value = P ( χ 2 <5.67) = 0.000042

Compare α and the p -value:

• α = 0.05
• p -value = 0.000042
• α > p -value

Make a decision: Since α > p -value, reject H 0 . This means that you reject σ 2 = 7.2 2 . In other words, you do not think the variation in waiting times is 7.2 minutes; you think the variation in waiting times is less.

Conclusion: At a 5% level of significance, from the data, there is sufficient evidence to conclude that a single line causes a lower variation among the waiting times or with a single line, the customer waiting times vary less than 7.2 minutes.

In 2nd DISTR , use 7:χ2cdf . The syntax is (lower, upper, df) for the parameter list. For [link] , χ2cdf(-1E99,5.67,24) . The p -value = 0.000042.

## Try it

The FCC conducts broadband speed tests to measure how much data per second passes between a consumer’s computer and the internet. As of August of 2012, the standard deviation of Internet speeds across Internet Service Providers (ISPs) was 12.2 percent. Suppose a sample of 15 ISPs is taken, and the standard deviation is 13.2. An analyst claims that the standard deviation of speeds is more than what was reported. State the null and alternative hypotheses, compute the degrees of freedom, the test statistic, sketch the graph of the p -value, and draw a conclusion. Test at the 1% significance level.

H 0 : σ 2 = 12.2 2

H a : σ 2 >12.2 2
df = 14
chi 2 test statistic = 16.39

The p -value is 0.2902, so we decline to reject the null hypothesis. There is not enough evidence to suggest that the variance is greater than 12.2 2 .

In 2nd DISTR , use7: χ2cdf . The syntax is (lower, upper, df) for the parameter list. χ2cdf(16.39,10^99,14) . The p -value = 0.2902.

## References

“AppleInsider Price Guides.” Apple Insider, 2013. Available online at http://appleinsider.com/mac_price_guide (accessed May 14, 2013).

Data from the World Bank, June 5, 2012.

## Chapter review

To test variability, use the chi-square test of a single variance. The test may be left-, right-, or two-tailed, and its hypotheses are always expressed in terms of the variance (or standard deviation).

## Formula review

${\chi }^{2}=$ $\frac{\left(n-1\right)\cdot {s}^{2}}{{\sigma }^{2}}$ Test of a single variance statistic where:
n : sample size
s : sample standard deviation
σ : population standard deviation

df = n – 1 Degrees of freedom

## Test of a single variance

• Use the test to determine variation.
• The degrees of freedom is the number of samples – 1.
• The test statistic is $\frac{\left(n–1\right)\cdot {s}^{2}}{{\sigma }^{2}}$ , where n = the total number of data, s 2 = sample variance, and σ 2 = population variance.
• The test may be left-, right-, or two-tailed.

Use the following information to answer the next three exercises: An archer’s standard deviation for his hits is six (data is measured in distance from the center of the target). An observer claims the standard deviation is less.

What type of test should be used?

a test of a single variance

State the null and alternative hypotheses.

Is this a right-tailed, left-tailed, or two-tailed test?

a left-tailed test

Use the following information to answer the next three exercises: The standard deviation of heights for students in a school is 0.81. A random sample of 50 students is taken, and the standard deviation of heights of the sample is 0.96. A researcher in charge of the study believes the standard deviation of heights for the school is greater than 0.81.

What type of test should be used?

State the null and alternative hypotheses.

H 0 : σ 2 = 0.81 2 ;

H a : σ 2 >0.81 2

df = ________

Use the following information to answer the next four exercises: The average waiting time in a doctor’s office varies. The standard deviation of waiting times in a doctor’s office is 3.4 minutes. A random sample of 30 patients in the doctor’s office has a standard deviation of waiting times of 4.1 minutes. One doctor believes the variance of waiting times is greater than originally thought.

What type of test should be used?

a test of a single variance

What is the test statistic?

What is the p -value?

0.0542

What can you conclude at the 5% significance level?

what is confidence interval estimate and its formula in getting it
discuss the roles of vital and health statistic in the planning of health service of the community
given that the probability of
BITRUS
can man city win Liverpool ?
There are two coins on a table. When both are flipped, one coin land on heads eith probability 0.5 while the other lands on head with probability 0.6. A coin is randomly selected from the table and flipped. (a) what is probability it lands on heads? (b) given that it lands on tail, what is the Condi
0.5*0.5+0.5*0.6
Ravasz
It should be a Machine learning terms。
Mok
it is a term used in linear regression
Saurav
what are the differences between standard deviation and variancs?
Enhance
what is statistics
statistics is the collection and interpretation of data
Enhance
the science of summarization and description of numerical facts
Enhance
Is the estimation of probability
Zaini
mr. zaini..can u tell me more clearly how to calculated pair t test
Haai
do you have MG Akarwal Statistics' book Zaini?
Enhance
Haai how r u?
Enhance
maybe .... mathematics is the science of simplification and statistics is the interpretation of such values and its implications.
Miguel
can we discuss about pair test
Haai
what is outlier?
outlier is an observation point that is distant from other observations.
Gidigah
what is its effect on mode?
Usama
Outlier  have little effect on the mode of a given set of data.
Gidigah
How can you identify a possible outlier(s) in a data set.
Daniel
The best visualisation method to identify the outlier is box and wisker method or boxplot diagram. The points which are located outside the max edge of wisker(both side) are considered as outlier.
Akash
@Daniel Adunkwah - Usually you can identify an outlier visually. They lie outside the observed pattern of the other data points, thus they're called outliers.
Ron
what is completeness?
I am new to this. I am trying to learn.
Dom
I am also new Dom, welcome!
Nthabi
thanks
Dom
please my friend i want same general points about statistics. say same thing
alex
outliers do not have effect on mode
Meselu
also new
yousaf
I don't get the example
ways of collecting data at least 10 and explain
Example of discrete variable
Gbenga
I am new here, can I get someone to guide up?
alayo
dies outcome is 1, 2, 3, 4, 5, 6 nothing come outside of it. it is an example of discrete variable
jainesh
continue variable is any value value between 0 to 1 it could be 4digit values eg 0.1, 0.21, 0.13, 0.623, 0.32
jainesh
hi
Kachalla
what's up here ... am new here
Kachalla
sorry question a bit unclear...do you mean how do you analyze quantitative data? If yes, it depends on the specific question(s) you set in the beginning as well as on the data you collected. So the method of data analysis will be dependent on the data collecter and questions asked.
Bheka
how to solve for degree of freedom
saliou
Quantitative data is the data in numeric form. For eg: Income of persons asked is 10,000. This data is quantitative data on the other hand data collected for either make or female is qualitative data.
Rohan
*male
Rohan
Degree of freedom is the unconditionality. For example if you have total number of observations n, and you have to calculate variance, obviously you will need mean for that. Here mean is a condition, without which you cannot calculate variance. Therefore degree of freedom for variance will be n-1.
Rohan
data that is best presented in categories like haircolor, food taste (good, bad, fair, terrible) constitutes qualitative data
Bheka
vegetation types (grasslands, forests etc) qualitative data
Bheka
I don't understand how you solved it can you teach me
solve what?
Ambo
mean
Vanarith
What is the end points of a confidence interval called?
lower and upper endpoints
Bheka
Class members write down the average time (in hours, to the nearest half-hour) they sleep per night.
how we make a classes of this(170.3,173.9,171.3,182.3,177.3,178.3,174.175.3)
Sarbaz
6.5
phoenix
11
Shakir
7.5
Ron
why is always lower class bundry used
Caleb
Assume you are in a class where quizzes are 20% of your grade, homework is 20%, exam _1 is 15%,exam _2 is 15%, and the final exam is 20%.Suppose you are in the fifth week and you just found out that you scored a 58/63 on the fist exam. You also know that you received 6/9,8/10,9/9 on the first
quizzes as well as a 9/11,10/10,and 4.5/7 on the first three homework assignment. what is your current grade in the course?
Diamatu
Abdul