<< Chapter < Page Chapter >> Page >

An interesting distinction is the one between quality attributes discernable at run-time (performance, security, availability, functionality, usability), those not discernable at run-time (modifiability, portability, reusability, integrability, and testability), and those related to the architecture’s intrinsic qualities (conceptual integrity, correctness, and completeness, buildability).

Quality analysis and evaluation techniques

Various tools and techniques can help ensure a software design’s quality.

  • Software design reviews: informal or semiformal, often group-based, techniques to verify and ensure the quality of design artifacts.
  • Static analysis: formal or semiformal static (non-executable) analysis that can be used to evaluate a design (for example, fault-tree analysis or automated cross-checking).
  • Simulation and prototyping: dynamic techniques to evaluate a design (for example, performance simulation or feasibility prototype.

Measures

Measures can be used to assess or to quantitatively estimate various aspects of a software design’s size, structure, or quality. Most measures that have been proposed generally depend on the approach used for producing the design. These measures are classified in two broad categories:

  • Function-oriented (structured) design measures: the design’s structure, obtained mostly through functional decomposition; generally represented as a structure chart (sometimes called a hierarchical diagram) on which various measures can be computed.
  • Object-oriented design measures: the design’s overall structure is often represented as a class diagram, on which various measures can be computed. Measures on the properties of each class’s internal content can also be computed.

Software design notations

Many notations and languages exist to represent software design artifacts. Some are used mainly to describe a design’s structural organization, others to represent software behavior. Certain notations are used mostly during architectural design and others mainly during detailed design, although some notations can be used in both steps. In addition, some notations are used mostly in the context of specific. Here, they are categorized into notations for describing the structural (static) view vs. the behavioral (dynamic) view.

Structural descriptions (static view)

The following notations, mostly (but not always) graphical, describe and represent the structural aspects of a software design - that is, they describe the major components and how they are interconnected (static view):

  • Architecture description languages (ADLs): textual, often formal, languages used to describe a software architecture in terms of components and connectors.
  • Class and object diagrams: used to represent a set of classes (and objects) and their interrelationships.
  • Component diagrams: used to represent a set of components (“physical and replaceable part[s] of a system that [conform]to and [provide] the realization of a set of interfaces”) and their interrelationships.
  • Class responsibility collaborator cards (CRCs): used to denote the names of components (class), their responsibilities, and their collaborating components’ names.
  • Deployment diagrams: used to represent a set of (physical) nodes and their interrelationships, and, thus, to model the physical aspects of a system.
  • Entity-relationship diagrams (ERDs): used to represent conceptual models of data stored in information systems.
  • Interface description languages (IDLs): programming-like languages used to define the interfaces (names and types of exported operations) of software components.
  • Jackson structure diagrams: used to describe the data structures in terms of sequence, selection, and iteration.
  • Structure charts: used to describe the calling structure of programs (which module calls, and is called by, which other module).

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software engineering. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10790/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software engineering' conversation and receive update notifications?

Ask