<< Chapter < Page Chapter >> Page >

Iterative nature of the requirements process

There is general pressure in the software industry for ever shorter development cycles, and this is particularly pronounced in highly competitive market-driven sectors. Moreover, most projects are constrained in some way by their environment, and many are upgrades to, or revisions of, existing software where the architecture is a given. In practice, therefore, it is almost always impractical to implement the requirements process as a linear, deterministic process in which software requirements are elicited from the stakeholders, baselined, allocated, and handed over to the software development team. It is certainly a myth that the requirements for large software projects are ever perfectly understood or perfectly specified.

Instead, requirements typically iterate towards a level of quality and detail which is sufficient to permit design and procurement decisions to be made. In some projects, this may result in the requirements being baselined before all their properties are fully understood. This risks expensive rework if problems emerge late in the software engineering process. However, software engineers are necessarily constrained by project management plans and must therefore take steps to ensure that the “quality” of the requirements is as high as possible given the available resources. They should, for example, make explicit any assumptions which underpin the requirements, as well as any known problems.

In almost all cases, requirements understanding continues to evolve as design and development proceeds. This often leads to the revision of requirements late in the life cycle. Perhaps the most crucial point in understanding requirements engineering is that a significant proportion of the requirements will change. This is sometimes due to errors in the analysis, but it is frequently an inevitable consequence of change in the “environment”: for example, the customer’s operating or business environment, or the market into which software must sell. Whatever the cause, it is important to recognize the inevitability of change and take steps to mitigate its effects. Change has to be managed by ensuring that proposed changes go through a defined review and approval process, and, by applying careful requirements tracing, impact analysis, and software configuration management. Hence, the requirements process is not merely a front-end task in software development, but spans the whole software life cycle. In a typical project, the software requirements activities evolve over time from elicitation to change management.

Change management

Change management is central to the management of requirements. This topic describes the role of change management, the procedures that need to be in place, and the analysis that should be applied to proposed changes. It has strong links to the Software Configuration Management KA.

Requirements attributes

Requirements should consist not only of a specification of what is required, but also of ancillary information which helps manage and interpret the requirements. This should include the various classification dimensions of the requirement and the verification method or acceptance test plan. It may also include additional information such as a summary rationale for each requirement, the source of each requirement, and a change history. The most important requirements attribute, however, is an identifier which allows the requirements to be uniquely and unambiguously identified.

Requirements tracing

Requirements tracing is concerned with recovering the source of requirements and predicting the effects of requirements. Tracing is fundamental to performing impact analysis when requirements change. A requirement should be traceable backwards to the requirements and stakeholders which motivated it (from a software requirement back to the system requirement(s) that it helps satisfy, for example). Conversely, a requirement should be traceable forwards into the requirements and design entities that satisfy it (for example, from a system requirement into the software requirements that have been elaborated from it, and on into the code modules that implement it).

Measuring requirements

As a practical matter, it is typically useful to have some concept of the “volume” of the requirements for a particular software product. This number is useful in evaluating the “size” of a change in requirements, in estimating the cost of a development or maintenance task, or simply for use as the denominator in other measurements.

Requirement measurements

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software engineering. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10790/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software engineering' conversation and receive update notifications?

Ask